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Abstract—We study the collective behavior of a
system of coupled neural mass oscillators that repre-
sent the voxels of a cortical area of the brain. Each
neural mass model, which describes three populations
of cortical neurons linked to each other via excitatory
and inhibitory connections, receives a periodic driving
from subcortical structures that relay sensory inputs.
We examine how the dynamics and synchronizabil-
ity of the represented cortical voxels change with the
inter-voxel coupling strength, for both excitatory and
inhibitory coupling. Our results show that an inter-
mediate level of excitatory coupling leads to a regime
in which the dynamics is both irregular and synchro-
nized among voxels. The results obtained shed light
on how brain dynamics depends on coupling within
cortical areas.

1. Introduction

Synchronization appears in many different sys-
tems formed by coupled dynamical units. This phe-
nomenon, which has been intensely studied in the last
couple of decades [1], is often analyzed using toy mod-
els that have simple dynamics (e.g. periodic oscil-
lations) [2]. In other cases, synchronization appears
in systems that display complex dynamical behavior.
It has been shown, for instance, that coupled chaotic
units may synchronize in some cases [3]. A relevant
example of a system that shows extremely complex dy-
namics but requires an optimal amount of synchrony
for its normal function is the brain. An excess of
brain synchronization in certain locations of the brain
may lead, for instance, to epilepsy or Parkinson’s dis-
ease [4]. Insufficient synchronization in certain fre-
quency bands, on the other hand, may cause other
problems such as Alzheimer’s disease and autism [5].
Besides, the coordinated activity in the brain operates
at different spatial and time scales. For instance, en-
sembles of neurons organize their (microscopic) spik-
ing activity via synchronization [6]. The result of this
synchronized activity is an oscillatory behavior of the
average activity of the neuronal ensemble [7]. This
average activity of mesoscopic populations of neurons
becomes the dynamical observable of the neural mass
model used in this work. At a larger, more macro-
scopic scale, the activity (measured with non-invasive

techniques such as fMRI, EEG and MEG) of different
brain areas that participate in a specific task also indi-
cate, in some cases, a high degree of synchronization.

In this paper, we study the synchronizability and
irregularity of the dynamics of neural populations at
the mesoscopic scale. To do so, we will consider as our
dynamical system a set of coupled neural mass mod-
els, namely voxels, which describe cortical columns
composed by three populations of neurons linked to
each other via excitatory and inhibitory connections.
Each cortical column receives a periodic driving from
a subcortical structure, e.g., the thalamus. Our aim
is to analyze the synchronizability and regularity of
this system’s dynamics, in terms of the excitatory and
inhibitory inter-voxel coupling.

2. The model

We use an extended version of the model introduced
by Jansen and coauthors [8, 9]. Jansen’s model de-
scribes the dynamics of a cortical column. The neu-
rons in this cortical column are grouped in three dif-
ferent populations: pyramidal, excitatory interneurons
and inhibitory interneurons. Their coupling architec-
ture is organized as follows. The pyramidal population
excites the excitatory and inhibitory interneuron pop-
ulations in a feedforward manner, and receives in turn
inhibitory and excitatory feedback from them. The
pyramidal population receives an incoming pulse den-
sity p(t) that includes excitatory, pe(t), and inhibitory,
pi(t), inputs from neighboring cortical columns, and a
periodic driving coming from the thalamus, pT (t). The
three populations transform the total average density
of action potentials arriving to their synapses from dif-
ferent origins,

∑

m pm(t), into an average postsynaptic
membrane potential, yi(t), which can be either excita-
tory or inhibitory. The integration of the total average
density of action potentials,

∑

m pm(t), performed at
the (excitatory) synapses of the populations is imple-
mented by the differential operator L(yi(t); a) defined
in the following way:

L(yi(t); a) =
d2yi(t)

dt2
+2a

dyi(t)

dt
+a2yi(t) = Aa

[

∑

m

pm(t)

]

(1)
and similarly for the inhibitory coupling, L(yi(t); b).
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The transformation of the total average postsynap-
tic potential of each population, m(t) = yexc(t) −
yinh(t), into an average density of action potentials,
pm(t) = λS(m(t)), takes place in the somas and is
described by a sigmoidal function:

S(m(t)) =
2e0

1 + er(ν0−m(t))
(2)

weighted by the coupling constant, λ. e0 determines
the maximum firing rate of the neural population, ν0

is the PSP for which a 50% firing rate is achieved and
r the steepness of the sigmoidal transformation. Four
connectivity constants (Cp with p = 1, ..., 4) represent
the coupling intensity between the three populations
which form each cortical column.

We consider a set of n cortical columns, voxels, ar-
ranged in an all-to-all connectivity configuration. The
full model for each cortical column i (with i = 1, . . . , n)
connected to other cortical columns j (with j 6= i,
j = 1, . . . , n), is:

L(yi
0(t); a) = Aa{S(yi

1(t) − yi
2(t))} (3)

L(yi
1(t); a) = Aa{C2S(C1y

i
0(t)) + p̄i + δ sin(2πft)

+α

n
∑

j=1
j 6=i

1

n − 1
S(yj

1(t) − y
j
2(t))} (4)

L(yi
2(t); b) = Bb{S(yi

1(t) − yi
2(t))

+β

n
∑

j=1
j 6=i

1

n − 1
S(yj

1(t) − y
j
2(t))} (5)

where y0(t), y1(t) and y2(t) correspond to the excita-
tory postsynaptic potential input to the interneuron
population, the excitatory postsynaptic potential in-
put to the pyramidal population and the inhibitory
postsynaptic potential input to the pyramidal popula-
tion, respectively. The parameter values of the model
are the same as those of Jansen et al. [8] except for
C = 133.5 (see the relation of this parameter with Cp

in ref. [8]). These equations have been solved numeri-
cally using the Heun method [10].

3. Results

3.1. Isolated voxel

Even though single cortical columns modeled by
Jansen’s model show regular behavior when p̄ is main-
tained constant [11, 12], they display complex behav-
ior when driven periodically [13, 14]. In Fig. 1a, we
show a time trace of (y1(t)− y2(t)) obtained for a cor-
tical column with a constant driving p̄ = 155.0 with
and without thalamic periodic driving. In Fig. 1b, we
show the power spectra of the corresponding signals.
This figure shows that those cortical columns which

Figure 1: Dynamics of an isolated cortical column.
Both regular and irregular dynamics are obtained with
Jansen’s model depending of the driving conditions.
(a) Time trace of (y1(t) − y2(t)) for a system with
(dashed line) and without (solid line) thalamic driving.
(b) Power spectrum of the data shown in (a). p̄ =
155.0 and δ = 0 (solid line), δ = 64 , f = 7.4 (dashed
line).

do not receive a (significative) driving from subcorti-
cal structures behave periodically, with a peak cen-
tered around 11 Hz, in the range of the upper alpha
band. However, those cortical columns which do re-
ceive a (significative) thalamic driving, which oscillates
at around 8 Hz (in the lower alpha band), may show
chaotic behavior. In this case, the power spectrum
does not exhibit a single narrow peak, but takes the
form of a wide band with a dominant peak centered
at the thalamic driving frequency. Ponten et al. [15]
have shown that the dynamical behavior of a set of
coupled neural mass oscillators forming a network with
irregular architecture is organized (is phase coherent)
at the functional level. These two results, say, the
(ir)regularity promoted by the thalamic driving and
the synchronizability appearing in the activity of the
cortical area enhanced by the column-column coupling
may vary considerably when the intensity and the na-
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Figure 2: Regularity, Reg (black), and synchroniza-
tion, Rsyn (gray) parameters in terms of the coupling
intensities for an ensemble of n = 50 periodically
driven cortical columns. (a) Results obtained when
increasing the excitatory coupling intensity, α. (b) Re-
sults obtained when increasing the inhibitory coupling
intensity, β.

ture of the coupling (excitatory and inhibitory) are
changed. Somehow, a competition between the irreg-
ular dynamical behavior appearing when the thalamic
driving dominates the input and the synchronizabil-
ity with neighboring cortical columns enhanced by the
neighboring column cortical coupling is established.

3.2. Cortical area dynamics

In order to model the activity of a cortical area, we
have considered a system of n = 50 coupled cortical
columns modeled by Eqs. (3)-(5) for varying coupling
parameters α and β, and a constant thalamic driving
with δ = 64 and f = 7.4. These parameter values
have been chosen because they lead to a broad power
spectrum (i.e. the dynamics is irregular). We have an-
alyzed the variation of regularity and synchronization
when changing the coupling parameters. Specifically,
we have performed s = 100 realizations of the dy-
namics at each value of α or β. To quantify how the

dynamics is, we define a regularity parameter, Reg, as
the average of the height of the second peak h2(τ) of
the autocorrelation function of mi(t) = yi

1(t) − yi
2(t):

Reg =
1

s

1

n

s
∑

t=1

n
∑

q=1

h2(τ), (6)

where the sums run over the s realizations and n corti-
cal columns. In order to quantify the synchronization,
we define a synchronization parameter Rsyn as the av-
erage of the maximum of the cross-correlation func-
tion, C(τ), of mi(t) between pairs of cortical columns:

Rsyn =
1

s

1

n(n − 1)

s
∑

t=1

n
∑

p=1
p6=q

max(|C(τ)|). (7)

Figure 2 shows these two parameters, Reg and Rsyn,
for increasing values of α and β. Figure 2a reveals, in
particular, that even though synchronization increases
very quickly when the excitatory coupling between cor-
tical columns increases, regularity is maintained very
low for intermediate values of α (here β = 0). This be-
havior is not observed when the coupling is inhibitory
(see Fig. 2b): inhibitory coupling (with α = 0) seems
to increase the regularity of the dynamics and the syn-
chronization of the cortical columns at the same rate.
The efficiency of the inhibitory coupling to increase
both parameters is larger than that shown when in-
creasing excitatory coupling.

4. Conclusions

We have considered a model which mimics the ac-
tivity of an ensemble of cortical columns that repre-
sent a small cortical area driven by a subcortical struc-
ture such as the thalamus. These cortical colums are
connected in an all-to-all configuration. The irregu-
lar dynamics obtained for a driven single column and
the synchronizability of the system have been studied
when increasing the excitatory and inhibitory coupling
within the area. Our results show that both the reg-
ularity and the synchronizability depend strongly on
the nature of the coupling. On the one hand, exci-
tatory coupling allows to synchronize the whole area
maintaining, for a wide range of intensities, the irregu-
lar nature of the cortical activity. On the other hand,
inhibitory coupling is much more effective destroying
the irregular activity allowing for a stronger synchro-
nization even for small coupling intensities. The abil-
ity of the excitatory connections to synchronize neu-
ronal populations while maintaing a complex dynamics
makes possible larger integration capabilities, specially
when considering the interaction of different cortical
areas working at the macroscopic level.
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