
IEICE Proceeding Series 

 

 

 

 

Selective Averaging with Application to Phase Reduction 

 

 

Gerd S. Schmidt, Jeff Moehlis, Frank Allgöwer 

 

 

Vol. 2 pp. 491-494 

Publication Date: 2014/03/18 

Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers 

Downloaded from www.proceeding.ieice.org 



Selective Averaging with Application to Phase Reduction

Gerd S. Schmidt†, Jeff Moehlis‡ and Frank Allgöwer†
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Abstract—For a class of vector fields, we show that one
can selectively average terms which are of the same order
in a small parameter, giving an extension of standard aver-
aging results. Such selective averaging is illustrated for the
phase reduction of a system of oscillators with both cou-
pling and external input, for which the coupling can be av-
eraged to give a term which only depends on phase differ-
ences, while the external input term is not averaged.

1. Introduction

We will consider vector fields of the form

ẋ = ε f 0(x, t) + ε f 1(x, t), x(0) = x0, (1)

where f i : Rn×R→ Rn is continuous in x and t for i = 0, 1.
We assume that

Mi ≡ sup
x∈D

sup
0≤εt≤L

|| f i(x, t)|| < ∞, i = 0, 1,

where D ⊂ Rn and L is chosen so that x(t) ∈ D for all
0 ≤ t ≤ L/ε. Moreover, we assume that f 0 and f 1 satisfy

|| f i(x, t) − f i(y, t)|| ≤ λ f i ||x − y||, i = 0, 1

for x, y ∈ D; here λ f i is called a Lipschitz constant for f i.
In this paper, we will extend averaging theorems

from [7] to the case that we call selective averaging, in
which certain terms for a vector field are averaged while
others are not. In (1), this corresponds to averaging f 0 but
not f 1. The use of selective averaging will be illustrated
for the phase reduction of a system of oscillators with both
coupling and external input.

2. The Selective Averaging Theorem

We first define the local average fT of a function f :
Rn × R→ Rn to be

fT (x, t) :=
1
T

∫ T

0
f (x, t + s)ds.

The following lemmas will allow us to prove the Selective
Averaging Theorem.

Lemma 2.1 (Lemma 4.2.3 from [7]) If the continuous
vector field f : Rn × R→ Rn is T -periodic in t, then

fT (x, t) = f (x) =
1
T

∫ T

0
f (x, s)ds.

Lemma 2.2 Consider the initial value problem (1). With t
on the time scale 1

ε
, the solution x(t) satisfies∥∥∥∥∥∥xT (t) − x0 − ε

∫ t

0
f 0
T (x(σ), σ)dσ

−
ε

T

∫ T

0

∫ t+s

0
f 1(x(σ), σ)dσds

∥∥∥∥∥∥
≤

1
2
εT ((1 + λ f 0 L)M0 + λ f 0 LM1).

Proof The proof is similar to [7, Lemma 4.2.7]. We ex-
press the solution to (1) as

x(t) = x0 + ε

∫ t

0
f 0(x(σ), σ)dσ + ε

∫ t

0
f 1(x(σ), σ)dσ.

Calculating the local average of the solution, we obtain

xT (t) = x0 +
ε

T

∫ T

0

∫ t+s

0
f 0(x(σ), σ)dσds

+
ε

T

∫ T

0

∫ t+s

0
f 1(x(σ), σ)dσds.

Now, the term
ε

T

∫ T

0

∫ t+s

0
f 0(x(σ), σ)dσds

=
ε

T

∫ T

0

∫ t

0
f 0(x(σ + s), σ + s)dσds + εR1

=
ε

T

∫ t

0

∫ T

0
f 0(x(σ), σ + s)dsdσ + εR1 + εR2,

where

‖R1‖ =

∥∥∥∥∥∥ 1
T

∫ T

0

∫ s

0
f 0(x(σ), σ)dσds

∥∥∥∥∥∥
≤

1
T

∫ T

0

∫ s

0
M0dσds =

1
2

M0T,

and

‖R2‖ =

∥∥∥∥∥∥ 1
T

∫ t

0

∫ T

0
[ f 0(x(σ + s), σ + s)

− f 0(x(σ), σ + s)]dsdσ

∥∥∥∥∥∥
≤
λ f 0

T

∫ t

0

∫ T

0
‖x(σ + s) − x(σ)‖dsdσ
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= ε
λ f 0

T

∫ t

0

∫ T

0

∥∥∥∥∥∥
∫ σ+s

σ

( f 0(x(ζ), ζ) + f 1(x(ζ), ζ))dζ

∥∥∥∥∥∥ dsdσ

≤ ε
λ f 0

T

∫ t

0

∫ T

0

∫ σ+s

σ

‖ f 0(x(ζ), ζ) + f 1(x(ζ), ζ)‖dζdsdσ

≤ ε
λ f 0

T

∫ t

0

∫ T

0

∫ σ+s

σ

(‖ f 0(x(ζ), ζ)‖+ ‖ f 1(x(ζ), ζ)‖)dζdsdσ

≤ ε
λ f 0

T

∫ t

0

∫ T

0
(M0s + M1s)dsdσ =

1
2
ελ f 0 t(M0 + M1)T

≤
1
2
λ f 0 L(M0 + M1)T.

Putting these expressions together gives the result.

Lemma 2.3 Consider the initial value problem (1). If y is
the solution of the initial value problem

ẏ = ε f 0
T (y, t) + ε f 1(y, t), y(0) = x0,

then x(t) = y(t) + O(εT ) on the time scale 1
ε
.

Proof The proof is similar to [7, Lemma 4.2.8].∥∥∥∥∥∥x(t) − x0 − ε

∫ t

0
f 0
T (x(σ), σ)dσ − ε

∫ t

0
f 1(x(σ), σ)dσ

∥∥∥∥∥∥
≤

∥∥∥∥∥∥x(t) − x0 − ε

∫ t

0
f 0
T (x(σ), σ)ds

−
ε

T

∫ T

0

∫ t+s

0
f 1(x(σ), σ)dσds

∥∥∥∥∥∥
+

∥∥∥∥∥∥ εT
∫ T

0

∫ t+s

0
f 1(x(σ), σ)dσds − ε

∫ t

0
f 1(x(σ), σ)dσ

∥∥∥∥∥∥ .
Now, the term∥∥∥∥∥∥ εT

∫ T

0

∫ t+s

0
f 1(x(σ), σ)dσds − ε

∫ t

0
f 1(x(σ), σ)dσ

∥∥∥∥∥∥
=

∥∥∥∥∥∥ εT
∫ T

0

∫ t+s

0
f 1(x(σ), σ)dσds

−
ε

T

∫ T

0

∫ t

0
f 1(x(σ), σ)dσds

∥∥∥∥∥∥
=

∥∥∥∥∥∥ εT
∫ T

0

(∫ t+s

0
f 1(x(σ), σ)dσ −

∫ t

0
f 1(x(σ), σ)dσ

)
ds

∥∥∥∥∥∥
=

∥∥∥∥∥∥ εT
∫ T

0

(∫ t+s

t
f 1(x(σ), σ)dσ

)
ds

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ εT
∫ T

0
sM1ds

∥∥∥∥∥∥ =
1
2
εM1T.

Putting this together with Lemma 2.2, we obtain∥∥∥∥∥∥x(t) − x0 − ε

∫ t

0
f 0
T (x(σ), σ)dσ − ε

∫ t

0
f 1(x(σ), σ)dσ

∥∥∥∥∥∥

≤
1
2
εT ((1 + λ f 0 L)M0 + λ f 0 LM1) +

1
2
εM1T.

Thus, we have

x(t) = x0 + ε

∫ t

0
f 0
T (x(σ), σ)dσ + ε

∫ t

0
f 1(x(σ), σ)dσ

+O(εT ).

Now,

y(t) = x0 + ε

∫ t

0
f 0
T (y(σ), σ)dσ + ε

∫ t

0
f 1(y(σ), σ)dσ,

so

x(t) − y(t) = ε

∫ t

0
[ f 0

T (x(σ), σ) − f 0
T (y(σ), σ)]dσ

+ε

∫ t

0
[ f 1(x(σ), σ) − f 1(y(σ), σ)]dσ + O(εt).

Therefore,

‖x(t) − y(t)‖ ≤ ε
∫ t

0
(λ f 0 + λ f 1 )‖x(σ) − y(σ)‖dσ + O(εT ).

Then, applying Gronwall’s Lemma [7, Lemma 1.3.1],

‖x(t) − y(t)‖ = O
(
εTeε(λ f 0 +λ f 1 )t

)
.

We can now prove the following.

Theorem 2.4 (Selective Averaging Theorem) Let x(t) be
the solution to

ẋ = ε f 0(x, t) + ε f 1(x, t), x(0) = x0, (2)

and let y(t) be the solution to

ẏ = ε f 0(y) + ε f 1(y, t), y(0) = x0, (3)

where f 0 is T -periodic, and f 0 and f 1 satisfy the assump-
tions given in Section 1. Then

‖x(t) − y(t)‖ = O(ε)

on the time scale 1/ε.

Proof This follows from Lemmas 2.1 and 2.3.

3. Application to Phase Reduction

A powerful technique for analyzing biological oscilla-
tors is the rigorous reduction to a phase model, with a single
variable for each oscillator describing the phase of the os-
cillation with respect to some reference state [5, 9, 3]. This
tremendous reduction in the dimensionality and complex-
ity of a system often retains enough information to yield a
useful understanding of its dynamics, and can allow for the
implementation of phase-based control algorithms.
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Phase reduction is commonly applied to systems of cou-
pled oscillators, where in the limit of weak coupling one
can use averaging to obtain terms which only depend on the
phase differences of the oscillators; see, for example, [2].
Phase reduction has also been applied to systems of uncou-
pled oscillators which receive an external input, for exam-
ple in [1]. Here we consider phase reduction for coupled
oscillators with an external input; by averaging only the
coupling term, we provide justification for models that are
sometimes useful for neural control problems, e.g., [8, 6].

Suppose that the system

dx
dt

= F(x)

has a periodic orbit xγ(t) with period T = 2π
ω

. Now consider

dxi

dt
= F(xi) + ε

∑
j

p(xi, x j) + εu(t)ê1, i = 1, · · · ,N,

where xi is the state of the ith oscillator, p represents cou-
pling between oscillators, u(t) is the external input, and ê1
is a unit vector in the x1-direction. (For a neuron, this could
correspond to an input u(t) in the voltage equation.) Here,
for simplicity we have assumed that all oscillators are iden-
tical, have identical coupling to all other oscillators, and re-
ceive the same input u(t). We transform to phase variables
as follows, cf. [5]:

dθi

dt
=
∂θi

∂xi
·

dxi

dt
=
∂θi

∂xi
·

F(xi) + ε
∑

j

p(xi, x j) + εu(t)ê1


= ω + ε

∂θi

∂xi
·
∑

j

p(xi, x j) + ε
∂θi

∂xi
· (u(t)ê1).

To lowest order in ε,

dθi

dt
= ω + εZ(θi) ·

∑
j

p(θi, θ j) + εZ(θi) · (u(t)ê1),

Z(θi) =
∂θi

∂xi

∣∣∣∣∣
xγ(θi)

, p(θi, θ j) = p(xγ(θi), xγ(θ j)).

Here, Z(θ) is known as the phase response curve [9]. Let
θi = φi + ωt:

dφi

dt
= εZ(φi+ωt)·

∑
j

p(φi+ωt, φ j+ωt)+εZ(φi+ωt)·(u(t)ê1).

Now, apply the Selective Averaging Theorem to average
the coupling term (to use this theorem, we can consider the
lift of φi to R):

dϕi

dt
=
ε

T

∫ T

0
Z(ϕi + ωt) ·

∑
j

p(ϕi + ωt, ϕ j + ωt︸  ︷︷  ︸
ϕ j−ϕi+ϕi+ωt

)dt

+εZ(ϕi + ωt) · (u(t)ê1).

Let s = ϕi + ωt, which gives

dϕi

dt
=

ε

2π

∑
j

∫ 2π

0
Z(s) · p(s, ϕ j − ϕi + s)ds

+εZ(ϕi + ωt) · (u(t)ê1).

Then, letting ϑi = ϕi + ωt,

dϑi

dt
= ω +

ε

2π

∑
j

∫ 2π

0
Z(s) · p(s, ϑ j − ϑi + s)ds.

+εZ(ϑi) · (u(t)ê1)

That is,

dϑi

dt
= ω + ε

∑
j

h(ϑ j − ϑi) + εZ(ϑi) · (u(t)ê1),

where
h(ψ) =

1
2π

∫ 2π

0
Z(s) · p(s, ψ + s)ds.

From the Selective Averaging Theorem, we expect θi(t) −
ϑi(t) = φi(t) − ϕi(t) = O(ε) on the time scale 1/ε.

We note that a similar phase reduction result has been
obtained using different means in [4].

4. The General Selective Averaging Theorem

Following [7], we can also prove a general selective av-
eraging theorem. Consider a vector field f : Rn × R→ Rn

which is continuous in x and t, and Lipschitz continuous in
x on D ⊂ Rn. If the average

f (x) = lim
T→∞

1
T

∫ T

0
f (x, s)ds

exists and the limit is uniform in x on compact sets K ⊂
D, then we call f a Krylov-Bogoliubov-Mitropolsky (KBM)
vector field. The following lemmas will allow us to prove
the General Selective Averaging Theorem.

Lemma 4.1 (Lemma 4.3.1 from [7]) If f 0 is a KBM vec-
tor field, and assuming that εT = o(1) as ε ↓ 0 (that is,
limε↓0 εT = 0), then on a time scale 1

ε
one has

f 0
T (x, t) = f 0(x) + O

(
δ0(ε)
εT

)
where

δ0(ε) = sup
x∈D

sup
t∈[0, L

ε )
ε

∥∥∥∥∥∥
∫ t

0

[
f 0(x, s) − f 0(x)

]
ds

∥∥∥∥∥∥ .
Lemma 4.2 Let y be the solution of the initial value prob-
lem

ẏ = ε f 0
T (y, t) + ε f 1(y, t), y(0) = x0, (4)

and suppose f 0 is a KBM vector field with order function
δ0(ε). Then the solution of

ż = ε f 0(z) + ε f 1(z, t), z(0) = x0 (5)

- 493 -



satisfies
y(t) = z(t) + O

(
δ0(ε)
εT

)
with t on a time scale 1

ε
.

Proof The proof is similar to ([7, Lemma 4.3.5]). We ex-
press the solutions to (4) and (5) respectively as:

y(t) = x0 + ε

∫ t

0
f 0
T (y(s), s)ds + ε

∫ t

0
f 1(y(s), s)ds,

z(t) = x0 + ε

∫ t

0
f 0(z(s))ds + ε

∫ t

0
f 1(z(s), s)ds.

Using Lemma 4.1,

y(t) − z(t) = ε

∫ t

0

(
f 0(y(s)) − f 0(z(s))

)
ds + O

(
δ0(ε)t

T

)

+ε

∫ t

0
( f 1(y(s), s) − f 1(z(s), s))ds.

Since it can be shown that∥∥∥∥∥∥
∫ t

0

(
f 0(y(s)) − f 0(z(s))

)
ds

∥∥∥∥∥∥ ≤
∫ t

0
λ f 0‖y(s) − z(s)‖ds,

we find that

‖y(t) − z(t)‖ ≤ ε
∫ t

0
(λ f 0 + λ f 1 )‖y(s) − z(s)‖ds

+O

(
δ0(ε)t

T

)
.

Applying Gronwall’s Lemma [7, Lemma 1.3.1] we obtain

‖y(t) − z(t)‖ = O

(
δ0(ε)t

T
eε(λ f 0 +λ f 1 )t

)
.

The result follows by taking t on the time scale 1/ε.

We can now prove the following.

Theorem 4.3 (General Selective Averaging Theorem)
Let x be a solution of the initial value problem

ẋ = ε f 0(x, t) + ε f 1(x, t), x(0) = x0.

We assume that f 0 is a KBM-vector field with order func-
tion δ0(ε). Let z be the solution of the initial value problem

ż = ε f 0(z) + ε f 1(z, t), z(0) = x0.

Then x(t) = z(t) + O(
√
δ0(ε)).

Proof The proof similar to [7, Theorem 4.3.6]. By
Lemma 2.3 we know that the solution y of

ẏ = ε f 0
T (y, t) + ε f 1(y, t)

satisfies
x(t) = y(t) + O(εT )

on a time scale 1
ε
. Also, from Lemma 4.2,

y(t) = z(t) + O

(
δ0(ε)
εT

)
.

Then, from the triangle inequality

‖x(t) − z(t)‖ ≤ ‖x(t) − y(t)‖ + ‖y(t) − z(t)‖,

we have

x(t) = z(t) + O(εT ) + O

(
δ0(ε)
εT

)
.

If we let T =
√
δ0(ε)/ε, then the result follows.
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