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Abstract—In this paper, we discuss a multi-robots
(flock of sheep) control by a robot sheepdog from spatial
discretization (e.g. cellular automata) approach. This work
was motivated by Sheepdog Project, in which a mobile
robot is developed to gather a flock of ducks and maneu-
ver them to a specified goal position. Then, we construct
a discrete model of sheepdog system and compare the dis-
crete model to continuous model. Moreover, we proposed
a control method to maneuver two groups of sheep to goal
by on-line clustering.

1. Introduction

A robot sheepdog project has demonstrated a robot sys-
tem that a small number of sheepdogs gathers a flock of
ducks and maneuver them to a specified goal position [1].
In previous studies, a fundamental flock control method
was designed and tested using a simulation model, and suc-
cessfully adopted to the real world. But, proposed control
method is only adopted under the condition of that flock of
sheep never separates.

In this paper, we analyze the sheepdog system from a
spatial discretization (cellular automata) approach. The
cellular automata approach, which was first proposed by
Stephen Wolfram [2], leads to understand the many com-
plex systems generated by agents [3]. First, we construct a
discrete version of the sheepdog system, and compare the
discretized model to continuous model. Moreover, we pro-
pose a control method to maneuver sheep that is composed
of small attraction force or two groups of sheep.

This paper is organized as follows. Section 2 prepares
basic properties hold on hexagonal cellular space, and in-
troduces local rules of sheep agent and sheep dog agent.
Section 3 discretizes a sheep model. Section 4 discretizes
the proposed control method in previous study, and com-
pares the discretized model to continuous model. Section 5
estimates the flock of sheep using confidence ellipse. Sec-
tion 6 proposes a control method to maneuver two groups
of sheep.

2. Rules of the discrete world

In this section, we define fundamental event rules in this
cellular world, and introduce two types of agents: sheep

Figure 1: Coordinate setting in the hexagonal cellular space

and sheepdog (robot).

2.1. Spatial discretization

Suppose a tessellation of the 2-dimensional Euclidean
space R2 with unit equilateral hexagons, as shown in Fig-
ure 1. Let O be the origin, which coincides with the center
of a hexagon. The x-axis is set as a line passing through O
and is perpendicular to an edge, while y-axis passes through
on of its vertex. Of course this is not the only choice, how-
ever, here we prefer hexagonal tiling to other possibilities
such as square or triangular tiling, mainly thanks to the fact
that all the distance between two adjacent cells are equal.

In ordinary continuous settings, configuration of an ori-
ented object on the plane (such as mobile robot) is ex-
pressed by an element of the special Euclidean group
SE(2) = R2 × S where S denotes the unit sphere. Now,
in contrast, we suppose that every object is placed at the
center of a hexagonal cell, thus its location is expressed by
a pair of integers which belongs to Z2. Moreover, its orien-
tation angle is supposed to take discrete value too; it should
be confined to 0,±1γ,±2γ,±3γ, · · · ∈ S, where 3γ and −3γ
are identified to each other. We will omit γ just for simplic-
ity, so i ∈ Z actually implies γi ∈ S. In summary, the space
of angles is identified with the set of integers modulo 6:

Z6 = {0,±1,±2, 3}

and the configuration space is Z2 × Z6 instead of SE(2).

2.2. Fundamental rules of sheep and sheepdog

The world in concern consists of the hexagonal cellular
space, sheep and sheepdogs. A robot sheepdog (robot) oc-
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(a) A robot sheepdog (b) A sheep

Figure 2: Objects in the hexagonal cellular space

Figure 3: Sheep model. Sheep position D; other sheep po-
sition Dn; robot position R; nearest point on wall W.

cupies a cell (Figure 2(a)), and has its own state in Z2 ×Z6.
On the other hand, a sheep does not have its orientation in
order to treat a sheep model as simple as possible, so its
state is in Z2. Multiple agents can never occupy a single
cell; i.e., each cell is empty, or contains either a sheep or a
robot. State of the world is collection of states of the robot
and sheep.

State of the world changes stepwise. Every robot
changes its state every step. On the other hand, every sheep
changes its state every N steps. Thus, the robot is N times
as fast as the sheep.

3. Discrete model of sheep

First, we define a vision area S C of a sheep D. The pur-
ple color cells in Figure 3 show an example of the vision
area S C = 3. In this paper, we set the parameter of the vi-
sion area at S C = 15. Then we consider a following setting;
every sheep D is influenced by the effect of other sheep,
robots, or walls within its vision area. The sheep’s move-
ment vector

−→
D is determined by the equation (1), where

NS C denotes the number of sheep in its vision area. The
flock of sheep is (1) attracted to each other (

−−→
VDn ); (2) re-

pelled from the wall (
−−→
VW ), preventing collisions; (3) also

repelled from the robot (
−→
VR) (see Figure 3), and affected by

disturbance L:

−→
D =

1
NS C

∑
n∈S c

−−→
VDn −

−−→
VW −

−→
VR + L (1)

where
−−→
VDn = KS 1

−−−→
DDn,

−−→
VW = KS 2

−−−→
DW,

−→
VR = KS 3

−−→
DR, and

L = KS 4

−→
Ra, where

−→
Ra denotes the vector whose magnitude

is lower than Ra = 1. KS 1 − KS 4 are parameter gains.

Figure 4: Center-tracking control. Sheep center F; Robot
position R; Goal position G.

4. Center-tracking control

This section introduces a discrete version of proposed
algorithm in the previous study [1].

4.1. Algorithm

The robot’s movement vector R1 is determined by the
equation (2). (1)

−→
VF causes the robot to move toward the

sheep center F, (2)
−→
V ′F causes the robot not to collide with

the sheep, and (3)
−→
VG causes the robot to get away from the

goal G (see Figure 4).

−→
R1 =

−→
VF −

−→
V ′F −

−→
VG (2)

where
−→
VF = KR1 min(|FG|,K)

−−→
RF/K,

−→
V ′F = KR2

−−→
RF/|RF|3,

−→
VG = KR3

−−→
RG/|RG|. And, min(|FG|,K)/K is a coefficient,

where K is a gain parameter. KR1 ,KR2 ,KR3 are also gain
parameters. It has been already known that the proposed
control method in the previous study is effective only if
sheep attraction force is large; i.e., gain parameter KS 1 is
large.

4.2. Simulation results

Now, 20 sheep are randomly distributed in an area (x, y),
where (x, y) is set from (30, 30) to (40, 40). The initial po-
sition of the robot is set to (x, y) = (50, 10), and the goal
position is also set to (x, y) = (75, 25)

4.2.1. Simulation with large sheep attraction

Let us begin to discuss the sheep control when sheep
attraction gain KS 1 is large. The gain parameters of sheep
are set to KS 1 = 20,KS 2 = 5,KS 3 = 16,KS 4 = 40, and those
of robots are also set to KR1 = 0.11,KR2 = 0.155,KR3 =

1.0,K = 5.0. Figure 5(a) shows a plot of the robot and flock
center paths. Figure 5(b) also shows the variance of flock.
The variance is calculated from the following equation:

σ =
1
20

20∑
n=1

|FDn|2
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(b) Variance of flock of sheep.

Figure 5: Simulation result (K1 = 20). (a) Black plot: robot
path; red plot: flock center path; black dot: initial position;
∗: final position; ×: goal position.
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(b) Variance of flock

Figure 6: Simulation result (K1 = 10). (a) Black plot: robot
path; red plot: flock center path; black dot: initial position;
∗: final position; ×: goal position.

It seems that the flock of sheep is brought to the goal posi-
tion. In addition, it can be seen that the variance converges
at constant ranges.

4.2.2. Simulation with small sheep attraction

Let us turn to discuss the sheep control when the sheep
attraction gain KS 1 is small. The different parameter is
KS 1 = 10, other parameters are set to the same values in
subsection 4.2.1.

Figure 6(a) shows a plot of the robot and flock center
paths. Figure 6(b) also shows the variance of flock. It
seems that the flock of sheep is brought near the goal, but
the variance diverges. The reason is considered that flock
will be separated because of the small attraction.

5. Tangent-tracking control

In this section, we propose to treat the flock of sheep
as the area of the 95% confidence ellipse of the estimated
location.

5.1. Algorithm

Suppose the flock of sheep is distributed in an area of
the 95% confidence ellipse of the estimated location [4].
When, we write a tangent line to the ellipse, far tangent
point from the goal position G is treated as a position Z (see

Figure 7: Tangent-tracking control
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(b) Variance of flock

Figure 8: Simulation result. (a) Black plot: robot path; red
plot: flock center path; black dot: initial position; ∗: final
position; ×: goal position.

Figure 7). The robot’s movement vector R2 is determined
by the equation (3). (1)

−→
VZ causes the robot to move toward

the position Z, (2)
−→
V ′Z causes the robot to get away from the

position Z, and (3)
−→
VG causes the robot to get away from

the goal G (see Figure 7).

−→
R2 =

−→
VZ −

−→
V ′Z −

−→
VG (3)

where
−→
VZ = KR4 min(|FG|,K)

−→
RZ/K,

−→
V ′Z = KR5

−→
RZ/|RZ|3,

−→
VG = KR6

−−→
RG/|RG|. KR4 ,KR5 ,KR6 are gain parameters.

5.2. Simulation results

Now, 20 sheep are randomly distributed in an area (x, y),
where (x, y) is set from (30, 30) to (40, 40). The initial po-
sition of the robot is set to (x, y) = (50, 10), and the goal
position is set to (x, y) = (75, 25). Then, the gain param-
eters of the sheep are set to KS 1 = 10,KS 2 = 5,KS 3 =

16,KS 4 = 40, and the gain parameters of the robot are also
set to KR4 = 0.11,KR5 = 0.16,KR6 = 1.0,K = 8.0.

Figure 8(a) shows a plot of robot and flock center paths.
Figure 8(b) also shows the variance of flock. It seems that
the flock of sheep is brought near the goal, and it has no
divergence.

6. Tangent-tracking based on bisectional clustering

From the proposed control methods in Section 4 and 5,
the flock of sheep are maneuverd to the goal position only
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Cluster 1 
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Figure 9: Tangent-tracking based on bisectional clustering.

if the flock is composed of one group. In this section, we
propose a control method to maneuver two group of sheep.

6.1. Algorithm

Suppose the flock is divided into two groups like Fig-
ure 9. First, we divide the flock group into two groups by
cluster analysis that grouping objects of similar kind into
respective categories [5]. Then, small group is treated as
cluster 1, and large group is also treated as cluster 2.

In this paper, we propose a two-phase control in order to
maneuver the flock to the goal position.

Phase 1 Suppose cluster 1 is a target flock and cluster 2
center F2 is a goal position. In this case, we use the
proposed control method in Section 5. When we write
a tangent line from the robot position R to the ellipse,
far tangent point from the position F2 is treated as a
position Z1 (see Figure 9). The robot’s movement vec-
tor is determined by the equation (4):

−→
R3 =

−−→
VZ1 −

−−→
V ′Z1
− −−→VF2 (4)

where
−−→
VZ1 = KR4

−−→
RZ1min(|F1F2|,K)/K,

−−→
V ′Z1

=

KR5

−−→
RZ1/|RZ1|3,

−−→
VF2 = KR6

−−−→
RF2|RF2|. KR4 ,KR5 ,KR6 are

gain parameters.

Phase 2 　After the variance of flock of all sheep is lower
than a pre-determined threshold σt, the robot maneu-
vers the flock of all sheep to the goal position. The
robot’s movement vector is determined by the equa-
tion (3) in Section 5.

6.2. Simulation results

20 sheep are randomly distributed in an area (x, y), where
(x, y) is set from (30, 30) to (35, 35), and (x, y) from (55, 55)
to (60, 60). The initial position of the robot is set to
(x, y) = (50, 10), the goal is set to (x, y) = (75, 25). Gain
parameters of the sheep are set to KS 1 = 10,KS 2 = 5,KS 3 =

16,KS 4 = 40, and gain parameters for the robot is set
to KR4 = 0.11,KR5 = 0.15,KR6 = 1.0,K = 8.0. Then,
we carried out some simulations, where the threshold from
Phase 1 to Phase 2 is set as σt = 40.
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Figure 10: Simulation result. (a) Black plot: robot path;
red plot: flock center path; blue plot: flock1 center path;
green plot: flock2 center path; black dot: initial position;
4: the flock center when phase 1 finished; ∗: final position;
×: goal position.

Figure 10(a) shows a plot of robot, flock, cluster 1, and
cluster 2 center paths. Figure 10(b) also shows the variance
of flock. It seems that flock of all sheep is maneuvered to
the goal position after the cluster 1 is brought to the clus-
ter 2.

7. Conclusion

In this paper, we constructed a discrete-space version
of the sheepdog system, and compared the discrete model
to continuous model. Moreover, we proposed a control
method to maneuver two groups of sheep to a goal posi-
tion. We examined effectiveness of proposed method by
several simulations. In the future, we will concentrate on a
multi-sheepdog system.
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