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Abstract—It has been shown in vivo that the changes in
the average excitatory synaptic conductance are balanced
with those of inhibitory ones in cortical and spinal cord
neurons. Additionally, time-constant firing irregularity is
achieved when the ratio of the excitatory and inhibitory ac-
tivities is constant. In this paper, we show that such ra-
tio may fluctuate with time under the condition of neural
balances. Time-changeable neural balance enables neuron
to assign wide range of statistical values, and may have a
possible relationship with robust neural computation in the
cortex.

1. Introduction

Firing patterns of cortical neurons in vivo are very irreg-
ular [1, 2]. Therefore, probabilistic models are necessary
to describe such patterns [3, 4]. Baker and Lemon showed
that the firing patterns recorded from motor areas can be
explained using a continuous-time rate-modulated gamma
process [5]. The probability density function of gamma
process is depicted as

p(T ) =
λκT κ−1exp(−λT )

Γ(κ)
, (1)

where T denotes an interspike interval, λ denotes a mean
firing rate, κ denotes a shape parameter, and Γ(κ) =∫ ∞

0 T κ−1exp(−T )dT is the gamma function. When κ = 1,
gamma process corresponds to Poisson process, and spike
train looks irregular. When κ is large, gamma process is
approximated by a normal distribution, and when κ →
∞, gamma process corresponds to perfectly regular firing.
Thus, κ is a shape parameter related to regularity.

Reproducibility of statistics of real spike train variabil-
ity is a key in examining the model plausibility. There are
a number of statistics quantifying the variability of spike
trains, and the coefficient of variation CV is one of the most
common measures which has been widely employed by
many researchers [1, 6, 7]. CV is defined as

CV =
1

T

√√
1

n − 1

n∑
i=1

(Ti − T )2, (2)

where Ti represents the ith ISI, and n the number of ISIs.
CV is a dimensionless index which indicates the spiking
irregularity and takes a value 1 for infinitely long purely
Poisson series of events, in which event intervals are in-
dependently exponentially distributed, and a value 0 for a
perfectly periodic sequences.

CV depends on κ in the case of constant firing rate. Baker
and Lemon assumed κ to be unique to individual neurons
and constant over time [5]. The assumption that κ is unique
to individual neurons is also supported by other studies [8,
9]. Unique κ makes the rate of CV constant in the case of
homogeneous gamma process.

However, in vivo, CV distributes widely (particularly 0.8-
1.8) even though they are recorded from same neuron dur-
ing same experimental condition in several studies [7, 9].

May this seemingly contradictory phenomenon be ex-
plained by varying the mean rate λ which makes the statis-
tics CV variable?

There are three mechanisms for making wide distribu-
tion of CV in vivo: rate fluctuation, irregularity fluctuation,
and statistical fluctuation.

First, rate fluctuation is a fluctuation of instantaneous fir-
ing rates during the experiment, which makes CV distribu-
tion wide. The value of CV is measured within a time win-
dow with a certain window size. If the time scale of the
rate change is longer than the window size, CV can exhibit
various values depending on the windows.

Next, irregularity fluctuation is a fluctuation of irregu-
larity factor of a spike generator during the experiment,
which also makes CV distribution wide. It is known that
the irregularity measure varies with time during the experi-
mental task [10]. If the irregularity is fluctuating during the
experiment, the statistical values may take various values
depending on the windows.

Finally, statistical fluctuation is a fluctuation that occur
due to finite window size effect, and may make CV distri-
bution wide.

In our former study [11], we have shown that the as-
sumption of κ to be unique to individual neurons and con-
stant over time is too strict in gamma spike generator [12].
In this paper, we confirm this result by conductance-based
neuron model, and answer to the question whether the
unique κ on gamma process can reproduce such wide dis-
tribution which is often observed in in vivo spike data only
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by changing mean firing rates. In addition, we focus on
the shift in the excitatory-inhibitory balance, which enables
neuron to assign wide range of statistical values, and may
have a possible relationship with robust neural computation
in the cortex.

2. Numerical Analysis

2.1. Constant-balance model

Constant κ is achieved when the ratio of the excitatory
and inhibitory activities is constant [13]. We show that
the neuron model with such assumption cannot reproduce
wide CV distributions. We consider the single compartment
model by Destexhe et al. [14], which reproduced the mem-
brane potential of neocortical pyramidal neurons subject to
an intense synaptic input.

Cm
dV
dt

= −gL(V − EL) − INa − IKd − IM −
1
a

Isyn + Iext,

INa = ḡNa m3h(V − ENa ),
IKd = ḡKd n4(V − EK),
IM = ḡM p(V − EK), (3)

where Cm is the specific membrane capacitance, gL is the
leak conductance density, and EL is the leak reversal poten-
tial, INa is the voltage-dependent sodium current and IKd is
the delayed-rectifier potassium current responsible for ac-
tion potentials. IM is a non-inactivating potassium current
responsible for spike frequency adaptation, Iext is an exter-
nal input, a is the total membrane area and m, h, n, p are
gating variables obey to first-order kinetic equations[14].

To generate realistic synaptic activity, Destexhe et al. in-
troduced the point-conductance model. The total synaptic
current, Isyn, was decomposed into a sum of two indepen-
dent conductances:

Isyn = ge(t)(V − Ee) + gi(t)(V − Ei), (4)

where ge(t) and gi(t) are time-dependent excitatory and
inhibitory conductances, respectively; Ee and Ei are their
respective reversal potentials and were identical to that of
the detailed biophysical model. The conductances ge(t) and
gi(t) were described by a one-variable stochastic process
similar to the Ornstein-Uhlenbeck process:

τe
dge(t)

dt
= −(ge(t) − ge0) + σeηe(t),

τi
dgi(t)

dt
= −(gi(t) − gi0) + σiηi(t), (5)

where ge0 and gi0 are average conductances, τe and τi

are time constants, ηe(t) and ηi(t) are normalized Gaussian
white noises with zero means.
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Figure 1: CV values obtained from conductance-based
model with sinusoidally varying rate. Hundred CV rates
are obtained from equation (2), and their means and vari-
ances are presented as plots and error bars. Blue, green and
red plots correspond to the CV with A = 10, A = 25 and
A = 50, respectively. The parameters are set as ge0 = 0.02,
gi0 = 0.08, ∆ = 1000(ms), respectively. Other parameters
are same as in [14]. When the amplitude A is large (red),
time scale is about s ∼ 2200 to reproduce the CV values of
0.8–1.8 which is obtained in several former studies [7, 9].

The excitatory and inhibitory conductances fluctuate
with time, but in the former study on conductance fluc-
tuation, noise is regarded to be weak [14]. Therefore, al-
though the balance between excitatory and inhibitory con-
ductance may subtly fluctuate with time, it is almost con-
stant. We call this model “constant-balance model”. In
order to fluctuate the firing rate, we vary the external in-
put Iext sinusoidally with period s and its amplitude A:
Iext(t) = Asin2πt/s. We set the bin size ∆, and obtained
the statistical values CV from equation (2). The result is
shown in Fig. 1.

In Fig. 1, when A = 10 (blue), the time scale s of over
2800 millisecond is needed to reproduce the range of CV

from the data in vivo, and s ∼ 2200 for A = 50 (red).
Such long time scales can be seen in delta wave which is
a high amplitude brain wave recorded with an EEG and is
usually associated with slow-wave sleep [15]. However,
delta wave activity during the waking state is not common
phenomenon for awake animals [15] and it is impractical
to assume the presence of such long time scale dynamics in
every experimental data.

From the observation of Fig. 1, if we assume the sinu-
soidally rate modulated external input, i.e. rate-modulated
constant-balance model, the dynamics which has fairly
long time scale is needed to reproduce the wide CV distri-
bution, which is an implausible assumption for the real ex-
perimental condition. Therefore, constant-balance model
cannot reproduce wide CV distributions, which is consis-
tent with our former study on gamma spike generator [11].
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Figure 2: Maximum CV values obtained from varable-
balance model are represented with colors. Hundred CV

rates are obtained and their means are plotted for different
time scale Te and Ti respectively. The parameters are set
as ge0 = 0.02, gi0 = 0.08, ∆ = 1000(ms), Ae = 10, Ai = 10
respectively. Other parameters are same as in [14]. In order
to reproduce the maximum CV values over 1.8 which is ob-
tained in several former studies [7, 9], the variable-balance
model can reproduce with a short time scale of Te and Ti

representing red and yellow area, which is much shorter
compared with that of constant-balance model.

2.2. Variable-balance model

Next, we consider the variable-balance model, in which
the firing rate and the irregularity factor κ are both modu-
lated sinusoidally with time. In conductance-based model,
κ on gamma process corresponds to varying the balance be-
tween excitatory and inhibitory conductance. We change
the amplitude of ge0 and gi0 periodically as follows:

ge0(t) = ge0 + Aesin(2πt/Te),
gi0(t) = gi0 + Aisin(2πt/Ti). (6)

Here, Te and Ti are the periods of the sinusoidal modula-
tion. We only assume conductance for modulation, and do
not apply external inputs.

The result is in Fig. 2. As in Fig. 2, we no longer
need long time scale for Te and Ti. For example, Te =

30(millisecond) and Ti = 30(millisecond) can reproduce
the maximum CV rate from the data in vivo. Such time
scale can be seen in beta waves or gamma waves, which
are widely observed oscillations in the frequency range of
13 to 30 Hz and 30 to 70 Hz respectively, arising from
synchronous and coherent electrical activity [16, 17]. It
is plausible to assume the presence of such time scale dy-
namics in every experimental data. Reproducing the firing
statistics of the experimental data is realized by modulating
the balance of excitatory and inhibitory conductances by a
realistic neuron model in a plausible way.

3. Discussion

We compared the constant-balance model and variable-
balance model from the viewpoint of reproducibility of
wide CV distribution. We conclude that the assumption
of the constant balance between excitatory and inhibitory
conductances is too strict as in the section 2.1. Instead, we
proposed the variable-balance model in which the excita-
tory/inhibitory balance modulate with time, and in fact it
has broaden the range of the statistics CV with short time
scale.

It has been shown in vivo that the changes in the average
excitatory synaptic conductance are balanced with those
of inhibitory ones in cortical and spinal cord neurons and
make irregular firing [18].

According to our result, such ratio may fluctuate with
time under the condition of neural balances. Several exper-
imental evidences for such time-changeable balances can
be found in recent physiological studies [19, 20]. In the
modeling studies, it has shown that the leaky integrate and
fire neuron model with conductance-based synapses does
not require a strict balance between excitation and inhi-
bition to achieve high irregularity of firing [21]. Time-
changeable neural balance enables neuron to assign wide
range of statistical values, and may have a possible rela-
tionship to robust neural computation in the cortex.

There exist several evidences that neuronal activities are
changeable with time. For instance, in the case of rhyth-
mic firing of neurons, we have to assume that the intensity
of excitatory and inhibitory neurons are the same, if we
assume that the balance between excitatory and inhibitory
is constant. Additionally, in the case of receiving syn-
chronous synaptic inputs, we have to assume that the in-
tensity of excitatory and inhibitory neurons are the same as
in the above mentioned case. It is a matter of course that
assuming variable-balance enables neurons robust compu-
tation.

Variable-balance must be generated, at least partly, from
local interconnected networks of excitatory and inhibitory
neurons, but the details of the local network structure are
largely unknown. It is a future problem to explore the ori-
gin of such balance as well as evaluating the effect of such
mechanisms for improving neural information processing.
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