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Abstract—We present a model for the emergence of
three important features found in many social and biolog-
ical systems, and especially in neural networks: modular
structures, scale-free distribution of connections strengths,
and computational capability. All such features naturally
emerge from the interaction of different oscillators, and
from the synchronization between their dynamics. Our re-
sults are of relevance in enlightening possible biological
mechanisms at the basis of the processing and integration
of information across distributed neural systems.

1. Introduction

In the last decades, researchers of all fields have recog-
nized the importance of systems composed of elements dis-
playing an oscillatory dynamics, interacting between them
on the top of a (complex) network [1, 2]. Many hetero-
geneous systems can be studied by means of such mod-
els: from cells of an organism, to social and technologi-
cal systems. Most of these systems share some common
characteristics: namely, they present a power law (scale-
free) scaling in the network connectivity, and elements are
organized in modules (community structures) at a meso-
scopic scale [3]. Remarkably, such characteristics are not
hard-coded by an external entity: instead, they appear (or
emerge) in a natural way from the interaction of the ele-
ments of the system.

One of the most astonishing examples of such emer-
gence of power-law and modular structure is the brain. It
is composed of thousands of millions of neurons, interact-
ing between them by means of intermittent electric currents
(known as spike trains). If such electrical activity is mod-
eled by an oscillatory dynamics, another emergent behavior
appers: the computational capability of the brain. While
no model exists yet able to reproduce at once these three
features, their interplay is believed to be the basis of the
systems general functioning and performance.

In this contribution, we will show how some simple
rules, governing the strengths of the connections between a
set of oscillatory elements, is able to create structures with
both scale-free and modular topologies [4, 5]. Furthermore,
we will show that synchronization between the dynamics
of different units can be used to encode information, ulti-
mately yielding a form of computation [6, 7].

2. Emergence of modular and scale-free topologies

The model we introduce to explain the simultaneos ap-
pearance of modular and scale-free topologies as a phe-
nomena emerging from synchronization is based on Ku-
ramoto oscillators [8]. This election is motivated by the
simplicity of the Kuramoto model, and by the wide array of
results (both numerical, analytics, and experimental) avail-
able in the Literature, which make it a classical example
in synchronization problems. In the Kuramoto model, the
phase of the i-th oscillator φi is defined as

φ̇i = ωi + λ
∑
j∈Ni

wi j sin(φ j − φi) (1)

On the one side, the dynamics of each oscillator is con-
trolled by its own angular velocity ωi; on the other side,
each oscillator also receives external inputs from neighbour
nodes (denoted by Ni), trying to driving its dynamics to-
ward a mean global dynamics. While this is standard in
the Literature about networking Kuramoto oscillators, we
have introduced a time-dependent dynamics in the coeffi-
cient governing the strength of the external inputs, i.e. wi j.
Specifically, each link connecting two nodes is subject to
two forces. First, the strength of links connecting pairs of
synchronized nodes is enhanced; this mechanism is known
to be relevant in neuronal plasticity, i.e. Hebbian learning.
Second, the resources available to each node for connect-
ing to other nodes are limited: therefore, enhancing one
connection implies the weakening of another link, so that
the sum is maintained. Mathematically, this is defined as:

ẇi j = pi j −

∑
k∈Ni

pik

 wi j (2)

wi j denotes the average phase correlation between oscil-
lators i and j over a characteristic memory time T . The first
term in the r.h.s. of Eq. 2 therefore accounts for the Heb-
bian learning: the higher the synchronization, the higher
the link weight; the second term limits the total weight as-
sociated to each node, thus limiting the available resources.

Once the system is defined, its dynamics is studied by
means of two parameter. The first one is the standard
time dependent Kuramoto order parameter, quantifying the
global synchronization of the nodes in the network:

r(t) =
1
N

∣∣∣∣∣∣∣
N∑

i=1

eiφi(t)

∣∣∣∣∣∣∣ (3)
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pij ¼
1

T

!!!!!!!!
Z t

"1
eð"ðt"t0Þ=TÞei ½’iðt0Þ"’jðt0Þ&dt0

!!!!!!!!: (3)

It follows from (2) that the normalization conditionP
j2N i

wij ¼ 1 holds at all times; i.e., the sum of the

weights of all incoming connections at each node is con-
served. Notice that the first and the second term in the
right-hand side of Eq. (2) account, respectively, for
homophily and homeostasis. Global synchronization can
be quantified through the time dependent Kuramoto order
parameter rðtÞ ¼ 1

N j
PN

i¼1 e
i’iðtÞj [8]. For a generic choice

of ! and T, our results consistently show that the system
evolves into an asymptotic state after some time ts, where
the weights wij take well-defined values, with small and
stationary fluctuations. Then, we can define a time aver-
aged order parameter r as

r ¼ lim
!t!1

1

!tN

Z tsþ!t

ts

!!!!!!!!
XN

i¼1

ei’iðt0Þ
!!!!!!!!dt

0;

!t being a suitably long time interval, to be later specified.
Furthermore, we denote by rij the time average of the

pairwise synchronization between connected units, rij ¼
lim!t!1

1
!t j

Rtsþ!t
ts ei½’iðt0Þ"’jðt0Þ&dt0j, and define the local

synchronization measure [9] as the ensemble average
(over all N nodes) of the weighted average of rij

rlink ¼
1

N

XN

i¼1

X

j2N i

wijrij:

Intuitively, this measure quantifies the average synchroni-
zation between connected nodes in the network. Even
though both r and rlink are close to 0 (1) for very low
(high) couplings, other dynamical regimes are observed
where rlink is large while r is still small, corresponding to a
high local synchrony before global order is obtained.

We consider a system with N ¼ 300 and K ¼ 20 and
explore the structural and dynamical features as functions
of ! and T. First, the system is integrated without adapta-
tion (i.e., at fixed values of wij ¼ 1=K) during 200 time
units. Then, at an instant defined to be t ¼ 0, the adaptation
mechanism is activated; i.e., Eq. (2) is incorporated, and
the network dynamics is integrated for another ts ¼ 2000
time units (such a period is at least 1 order of magnitude
larger than that typically needed to reach the stationary
state). Time ts marks the beginning of the period of moni-
toring the global and local synchronization features in the
network, which, in our simulations, is performed along an
interval of !t ¼ 1000 time units [10]. Finally, all reported
values result from a further ensemble average over 30
independent integrations of the system [11].

Figure 1(a) shows r as a function of ! and T. At
relatively large values of T, r depends almost exclusively
on !, featuring a quasilinear dependence up to ! ( 4, and

then rising up steeply into its saturation plateau r) 1. This
phase transition can be understood by referring to the
classical Kuramoto model. Denoting, indeed, the natural
frequency distribution by gð!Þ, the critical coupling of the
Kuramoto model is !c ¼ 2="gð0Þ, which turns out to be 4
in our case [8]. We expect that, with increasing !, a higher
and higher synchronization level sets in the network, caus-
ing the pij to approach the value of 1. Thus, the wij will
remain close to their initial value 1=K [see Eq. (2)]. At high
enough !, therefore, the system is almost indistinguishable
from a modified Kuramoto model in which NðN " 1Þ=2"
NK links have been pruned. By monitoring rðtÞ for T ¼ 15
and several ! values [see Fig. 1(c)] one observes that rðtÞ is
already large at the preadaptive stage of the dynamics for !
close to !c. Figures 1(a) and 1(c) show that the adaptive
mechanism has the effect of generically enhancing global
synchronization in the network to a remarkable extent
already for coupling strengths below the critical value.
Figure 1(b) shows rlink as a function of ! and T. For a

given T, the local synchronization is a nonlinear, concave
downwards function of !, with, again, a sudden rise at ! (
!c, that has the necessary amplitude to make rlink identi-
cally equal to one within our numerical accuracy. The
growth of rlink with ! is, however, much faster than that
of r, which delimits (for !< 1 and T > 1) a wide region
where the ratio rlink=r is always higher than 3 (and for the

FIG. 1 (color online). Global and local synchronization indi-
cators. r [(a), see text for definition] and rlink (b) in the (T, !)
parameter space. The color coding is reported in the right
columns. (c) rðtÞ for T ¼ 15 and ! 2 f0:05; 1:50; 2:50;
3:80; 4:20g (specific values indicated by the arrows) for the
nonadaptive (t < 0) and the adaptive (t * 0) evolution of the
network.
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Figure 1: Global and local synchronization indicators, r
(left) and rlink (right). The color coding is reported in the
right columns.

The second one is a local parameter order, quantifying
the average synchronization between connected nodes in
the network:

rlink =
1
N

N∑
i=1

∑
j∈Ni

wi jri j (4)

We consider a system with N = 300 and K = 20 and
explore the structural and dynamical features as functions
of λ (a global connectivity strength) and T . Figure 1 shows
the behavior of r (left) and rlink (right) as a function of these
two parameters. According to Fig. 1 Left, the adaptive
mechanism has the effect of generically enhancing global
synchronization in the network to a remarkable extent al-
ready for coupling strengths below the critical value. Yet,
in Fig. 1 Right it is shown that the growth of rlink with λ
is, however, much faster than that of r, which delimits (for
λ < 1 and T > 1) a wide region with low global synchro-
nization, but strong local synchronization: in other words,
in this region there is an emergence of modular (cluster)
synchronization.

This emergence of modularity is also accompained by
the appearance of a weight distribution (i.e., the topology
resulting from the competitive adaptation mechanism) fol-
lowing a power-law scaling.

3. Emergence of a computation capability

After demonstrating that synchronization between dif-
ferent dynamical units can be used to create a modular
and scale-free structure, we will see how synchronization
can be also used to perform simple Boolean computation.
While here we will just consider Kuramoto oscillators, the
model has been extended to other chaotical oscillators [6]
and neuron models [7].

First of all, in order to achieve a computation capability,
it is necessary to define a way for representing information:
in a Boolean context, this means a way for representing 0
and 1 bits. Here, we code such bits by means of the level
of synchronization of each network’s unit with two signals,
S (t) and R(t). The fundamental element of computation is
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Figure 2: (Left) Schematic representation of the connectiv-
ity of each oscillator. (Right) Expected output as a function
of the input signals.

sketched in Fig. 2, and consists of a dynamical system (in
this case, a Kuramoto phase oscillator), and two input ports
(A and B). The assumption is that almost all networked
units are subjected to a same external synchronizing signal,
in a way that their dynamics (in the absence of any further
interaction) would result in a time series synchronous with
S (t) (which, from here on, will be taken as the 0-state of the
computation). We also assume that a second reference sig-
nal R(t), constituting the 1-state, is present in the network,
as produced by the evolution, for instance, of at least one
unit that is not suffering the effect of the common forcing.

As shown in Fig. 2 Left, each Kuramoto oscillator is
also forced by an external signal, entering from port A; the
strength W of this coupling is the result of the following
adaptive dynamics:

dW
dt

= −W(W − w1)(W − w2) + k [∆(A, B) − thr] . (5)

∆(A, B) represents the phase synchronization error be-
tween signals entering ports A and B. When w1 = 0.5 and
w2 = 1.0, the first term of the r.h.s. of Eq. 5 creates three
equilibrium points, two of them stable (corresponding to
W = 0 and W = 1). The second term forces the system
toward one of these two equilibrium points, depending on
the synchronization error ∆. Therefore, the dynamics of W
is defined in such a way that the coupling strength tends to
zero when the synchronization error between the input sig-
nals entering ports A and B vanishes, i.e., when both inputs
are synchronized, and to a positive value otherwise (Fig. 2
Right).

Once defined the structure of the basic computation unit,
we are interested in how this unit can perform simple com-
putations, and how a group of them, interacting above a
network, can carry out more complicated tasks. In order to
achieve this result, we will focus on the construction of a
NAND gate, whose output is zero only when both inputs
are ones. This gate is one of the universal Boolean gates,
in that any other Boolean computation can be performed
by using a combination of NAND gates, and therefore any
Turing machine can be constructed from them [see [?]].
The reference signal R is fed inside port A, and the two
input signals are summed (both of them with weight 1/2
) and presented to port B. Only when the two inputs are
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one, i.e., are they synchronized to the reference signal R,
W tends to zero, and therefore the output follows the ID
dynamics (i.e., a zero output).

4. Conclusions

In conclusion, we have shown how a network compet-
itive adaptation leads to the emergence of those meso-
and macroscale features that are commonly observed in
real neural systems. Furthermore, we have shown as a
novel computational paradigm may emerge from similar
adaptation mechanisms, where the coding and processing
of information emerge from adaptive synchronization pro-
cesses. Our results are of relevance in enlightening pos-
sible biological mechanisms at the basis of the process-
ing and integration of information across distributed neu-
ral systems, where neural assemblies are known to orga-
nize their dynamics in a balance between synchronization
and de-synchronization [9, 10, 11], with modifications as-
sociated with a number of neurological illnesses, including
schizophrenia and Alzheimer disease [?].
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