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Abstract-To effectively solve the electromagnetic scattering 

problem of large-scale finite array structure, a non-overlapping 
domain decomposition method(DDM), the dual-primal finite 
element tearing and interconnecting method(FETI-DP), is applied 
to the hybrid finite element–boundary integral–multilevel fast 
multipole algorithm method(FE-BI-MLFMA). The formula of 
near scattering field is deduced by equivalent electric and 
magnetic current. Then, the Generalized Radar Cross Section 
(GRCS) in near scattering region is calculated by the near 
scattering field. The numerical performance of the proposed 
method is demonstrated by calculating a patch antenna array’s 
scattering. 

I. INTRODUCTION 

The domain Decomposition Method (DDM) has always 

been recognized as an important scheme to construct highly 

efficient algorithm. The Finite Element Method (FEM), 

implemented together with a domain decomposition algorithm 

in electromagnetic, was first introduced by Després[1]. 

Subsequently, sorts of advanced finite element domain 

decomposition methods were proposed [2]-[6]. Among various 

existing finite element domain decomposition methods, a non-

overlapping finite element tearing and interconnection (FETI) 

method is investigated as a particularly efficient method [2]-[3]. 

Recently, a dual-primal technology is adopted in FETI denoted 

as FETI-DPEM1, which is successful applied for the 

computation of large-scale finite array antenna radiation 

problem [5]. The convergence of the FETI-DPEM1 algorithm 

becomes slow at higher frequencies. This disadvantage can be 

eliminated by using the FETI-DPEM2 algorithm [6], which 

enhances the dual-primal (DP) idea with two Lagrange 

multipliers, while the field continuity at the subdomain 

interfaces is guaranteed by the Robin-type transmission 

condition. To improve the algorithm [6] accuracy, a second-

order absorbing condition is introduced [7], but the 

approximation for the solution can’t be omitted completely. 

The hybrid finite element–boundary integral–multilevel fast 

multipole algorithm method (FE-BI-MLFMA) has been 

verified as a general and accurate method for inhomogeneous 

electromagnetic problems [8]. Whereas, the final deduced FE-

BI matrix is an ill-conditioned matrix for its partly sparse and  

partly dense matrix. It becomes difficult to solve the system 

matrix by general iterative solver and even no convergence for 

some complex problems. Then, two methods are applied to 

improve the convergence of traditional FE-BI-MLFMA [9]-

[10]. Though the two methods can accelerate the convergence 

effectively, the process of solving the inverse of a sparse 

matrix required in each method consumes large memory. This 

bottleneck limits the application of FE-BI-MLFMA in solving 

large-scale electromagnetic problems. 

To improve the computational accuracy of finite element 

DDM and reduce the high memory consumption by FE-BI-

MLFMA, combining the dual-primal tearing and 

interconnecting DDM and FE-BI-MLFMA together yields a 

new hybrid method denoted as FETI-BI-MLFMA. What’s 

more, scattering field anywhere in space is strictly deduced by 

the current and magnetic sources on the outward surface of 

object which has been obtained by FETI-BI-MLFMA. Take a 

patch array antenna as an example of finite array structure and 

calculate its near and far field by the proposed method. 

II. FORMULATION 

A. The FETI-BI-MLFMA Method 

Considering scattering by an inhomogeneous object, whose 

surface is denoted as S .According to the conventional FE-BI-

MLFMA [8], the computing region is directly divided into 

interior region and exterior boundary by the surface S .The 

interior field is formulated as 
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where E and H  are the unknown electric and 

magnetic field respectively. In addition,
0Z  is the free-space 

impedance and 
0k  is the free-space wave number. n̂  denotes 

the outward unit vector normal to S . The field on the exterior 

surface is formulated into the following combined field integral 

equation (CFIE): 

0.5 EFIE 0.5 MFIE                                   (2) 

For explicit expressions of the function CFIE in (2), the 

reader should refer to [8]. 

In this paper, the FETI-DPEM2 algorithm is applied in the 

FEM part of FE-BI-MLFMA. To be more specific, the interior 

FEM domain is decomposed into N  non-overlapping sub-

domains. Let the sub-domains iV and jV be adjacent, we 

employ ,j i , ,i j to represent their respective neighboring 

surfaces, with the corresponding outward unit normal vectors 

being ˆ
in and ˆ

jn .The edges shared by more than two subdomains 
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or shared by two sub-domains only for those on exterior 

boundary are called corner edges denoted as
c . 

At the interfaces
i , the continuity of the tangential electric 

and magnetic field components is guaranteed by imposing 

Robin-type transmission conditions with extra variable
iΛ : 
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Thus the fields in each sub-domain can be independently 

formulated with combination of (1) and (3), which is given by  
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The electric field 
iE  in the thi  sub-domain can be expanded 

with edge-element vector basis function and (4) is cast in the 

following form for the thi  sub-domain:  
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with 
iW  denotes a column vector containing the edge-element 

vector basis function in the thi  sub-domain. 

In each subdomain, the unknown coefficients of the electric 

field 
iE  are grouped into three categories

,V iE , 
,I iE , and 

,c iE : 
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In (8), the superscript   denotes matrix transposition. 

Furthermore, the subscripts V, I and c  denote the degrees of 

freedom associated with the internal volume, interface, and 

corner edges, respectively. The unknowns ,r i associated with 

the internal volume and interfaces are considered as local 

variables, whereas the unknowns ,c i  associated with the 

corner edges are considered as global variables. The global 

primal variables in interior FEM region can be represented as: 

,1 ,, , ,r r N c


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When the solution vector is constructed in this manner, the 

tangential electric field at the corner edges is ensured to be 

continuous. Applying this notation to (5) results in 
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Here, ,r iΒ , ,I iΒ , and ,c iΒ  are Boolean matrixes and satisfy 

, ,r i i r iE EΒ , , , ,I i r i I iE EΒ , and , ,c i i c iE EΒ . The unknown i is 

called the dual-variable and defined as , 0
i

I i i i idS





     Β W Λ  

whose dimension corresponds to the number of unknowns at 

interfaces. 

From (10), it can be seen that the system matrix 

characterizing each subdomain decouples, and the interaction 

of the adjacent subdomains is included in the transmission 

conditions of the interfaces. Combining the two matrix 

equations in (10) permits the elimination of the unknowns ,r i . 

We assemble the subdomains contribution from (10) to obtain 

a global corner unknowns related system equation written as: 

cc c cI c sE H K K C
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with  
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where 
,c iO ,

,I iO , and 
iR  are Boolean matrices satisfying 

, , , ,, ,c i c i c i I i s i i sE E H H   O O R . 

To couple subdomains together, another set of equations 

representing the tangential electric and magnetic field 

continuity across the interfaces between different subdomains 

is required. Based on Robin-type transmission condition given 

by (3) at interface ,j i , we can get  
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Where 
,i jE  denotes the electric field at the interface of 

the thj subdomain adjacent to the thi  subdomain and 
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Assembling (15) together for all sub-domains to get the 

following another corner problem equation: 
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And Boolean matrix ,j iT satisfies , , , ,and j i j i i j i j i iE E    T T . 

By combining (11) and (16) and eliminating
cE , we can 

derive the equation for the dual unknowns and the magnetic 

field on surface S  
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Therefore, (20) takes the form 
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Similar to the convenient FE-BI-MLFMA, discretizing (2) 

by MOM yields: 

s sE H P Q b
                          

(24) 

For explicit expressions of the matrix P , Q and column vector 

b  in (24), the reader should refer to [8]. 

Because of (9), the unknown sE is grouped into ,c sE and 

,r sE  .with the aid of (10) and (11), equation (24) is deduced 

into 
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The final system matrix equation of FETI-BI-MLFMA is 

obtained by combination of (23) and (25) as  
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Observing (28), by the introduction of the dual unknown  , 

the original 3-D problem is reduced to a problem relating with 

sub-domain interfaces and exterior boundary surface. It is 

apparent that the problem always has fewer unknowns which 

enable us to solve large-scale problems. 

B. The Strict Scattering Field Formulation  

After solved by FETI-BI-MLFMA, the fields in interior 

region and on surface S  have been obtained. Because the 

obtained filed is limited in computing region, scattering field 

anywhere in space out of objects can be strictly deduced by the 

current and magnetic sources on surface S according to 

electromagnetic field theory. The scattering electric field s
E  in 

r  is calculated by  

 ˆ ˆ( ) L( ) K( )s
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where /Z   . L and K  are two operators defined in [11]. 

Introduce ' R r r , R   r r , and R̂ R R  where r  denotes 

any point at surface S . Through a series of mathematical 

transformation, formula (29) is reduced to  

  

  

 

0

3 2 2

0

4

2

ˆ ' 1 1
( ) 1

4

ˆ ' 1
1

2

ˆ' 1
(1 )

4

jkR

ss

S

jkR

s

S

jkR

s

S

n ejkZ
dS

R jkR k R

n eZ
dS

R jkR

n ejk
dS

R jkR













    
   

 

   
  

 

 
 







H r R R
E r

H r R R

E r R

(30) 

Using (30), the scattering electric filed in near and far region 

is strictly calculated, we adopt the following general radar 

cross section (GRCS) [12] to further demonstrate object’s near 

and far field property. 
2

2
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e
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E

E

              

(31) 

In formula (31), ˆ
re  denotes the polarized direction, R  

denotes the distance between observing point and center of 

target. When R  is big enough, GRCS is consistent with the 

strict RCS. 

III. NUMERICAL EXPERIMENTS  

To verify the validity of FETI-BI-MLFMA and strict 

scattering formulation, a homogeneous dielectric 4 4 4     

cube’s GRCS on sphere surface 1000 away from the center of 

object is calculated. It is illuminated by plane wave at 

incidence angle 0 , 0    and the computing region is divided 

by cuboid subdomain with dimension of 0.5 0.5 4    . A 

tetrahedral mesh with average edge length of 0.05 is used. The 

result from FETI-BI-MLFMA is compared with RCS by MOM 

in Fig. 1. Investigate Fig. 1 the result from FETI-BI-MLFMA 

has a good agreement with MOM. 
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Fig. 1.  Bi-static VV-polarized RCS and GRCS of a dielectric cube in the E-

plane 
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Fig. 2.  Illustration of a patch antenna array 
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Fig. 3.  Illustration of different subdomains needed to be analyzed in M N  
array problem 

Next, take a patch array antenna’s (Fig. 2) scattering as an 

example of finite array structure to investigate the numerical 

scalability of FETI-BI-MLFMA. Each patch element is 

regarded as a sub-domain and is extended along both x  and y  

directions denoted as M N  patch array antenna. A tetrahedral 

mesh with average edge length of 0.05 is used. To save 

computer memory and time, the periodicity of structure is 

sufficiently utilized which is shown by Fig. 3. 8 8 , 16 16 , 

32 32  patch array antennas are illuminated by plane wave at 

incidence angle 0 , 0     and the GRCS on sphere surface 

1000  away from the center of objects is calculated. Results are 

showed in Fig.4-6 and mainly computation information is listed 

in Table I Table I suggests that memory consumption is rising 

linearly with the increase of sub-domain number, and the 

iterative step goes up at a very slow speed, which 

demonstrating the favorable numerical scalability of FETI-BI-

MLFMA for solving two-dimension extension problems. 
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Fig. 4.  Bi-static GRCS of the 8 8 patch antenna array 
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Fig. 5.  Bi-static GRCS of the 16 16  patch antenna array 
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Fig. 6.  Bi-static GRCS of the 32 32  patch antenna array 

TABLE I 

COMPUTATION INFORMATION FOR PATCH ANTENNA ARRAYS 

Array size 
Iteration 

number 

Memory

（GB） 

Computing time

（min） 

8 8  50 0.5 5.2 

16 16  87 1.9 23.8 

32 32  145 7.6 153.9 

Finally, we use the presented method to calculate GRCS by 

50 50  patch antenna array on sphere surface 15 , 20 , and 30  

away from the center of object. The driving plane wave is at 

incidence angle 0 , 0    . Fig. 7 shows the computational 

result. 
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Fig. 7 Bi-static VV-polarized GRCS of the 50 50  patch array antenna in E-

plane 
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