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Abstract—We study dynamics of electroporation in
a single spherical cell exposed to Amplitude-Modulated
(AM) electric fields. This study is based on the mathemati-
cal model of electroporation developed in [Krassowska and
Filev, Biophys. J., vol.92, pp.404–417, 2007]. Numerical
simulations of the model suggest that an AM electric field
induces the electroporation and a created pore substantially
evolves under the AM field.

1. Introduction

Electroporation is a multiscale phenomenon of biolog-
ical cell membrane in which its electrical permeability
changes due to creation of transient pores by electric pulses
[1, 2]. This phenomenon is widely used in medicine and
biotechnology, because it enables the delivery of biolog-
ically active molecules, which are normally impermeable
through ion channels, into cells. Recent advance of mi-
crofludics enables the development of single cell electro-
poration devices [3].

The purpose of this paper is to investigate the use of al-
ternating electric fields to induce the electroporation. Nor-
mal electroporation is induced with an electric field with
constant amplitude. It is recognized in [3] that a strong
electric field induces the irreversible electroporation, that
is, damages a cell. In contrast to this, our approach pre-
sented in this paper is based on alternating electric fields.
The use of alternating electric fields has a potential of
decreasing the damage of cells and of inducing the fluid
movement in a micro-scale channel (see e.g, [4, 5]), which
enables the development of novel microfludic electropora-
tion devices in which electroporation, separation, and de-
tection processes of cells are integrated. Several groups of
researchers have studied on electroporation by alternating
electric fields: see e.g. [6, 7, 8]. In [9] the authors develop a
nonlinear dynamical system model for electroporation of a
single spherical cell exposed to electric fields. In this paper,
based on the developed nonlinear model, we numerically
study multiscale phenomena in the dynamics of electropo-
ration induced by an Amplitude-Modulated (AM) electric
field.

2. Dynamical Model

We briefly introduce the dynamical model of electropo-
ration of a single spherical cell exposed to electric fields,
which is developed in [9]. Fig. 1 shows the schematic di-
agram of electroporation of a single cell. For deriving the
model, we make the following assumptions: (i) system is
under electro-quasistatic state; (ii) parameters of the cell
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Figure 1: Schematic diagram of electroporation of a sin-
gle spherical cell suspended in conductive fluid. The po-
lar coordinate (ρ, θ) is used for mathematical modeling.
The intercell region Ωi is given as {(ρ, θ); 0 ≤ ρ < a}
and the outercell region Ωe fulfilled by conductive fluid
as {(ρ, θ); a < ρ < 3a}. The cell membrane ∂Ωm cor-
responds to {(ρ, θ); ρ = a} and the outer boundary ∂Ω to
{(ρ, θ); ρ = 3a}.

membrane are constant; and (iii) changes of cell area, vol-
ume, and shape are negligible. No space for explaining
all parameters of the model is available in this paper: see
[9] in details. According to the spatial symmetry posed
in the problem, the dynamical model here is derived for
a two-dimensional object. However, in order to compute
the number of pores around the cell, we will consider the
three-dimensional cell surface.

The electrostatic potentials φi(t, ρ, θ) and φe(t, ρ, θ) inside
and outside the cell, denoted by Ωi and Ωe, are represented
by the following Laplace’s equations:

εi∇2φi = 0 in Ωi, εe∇2φe = 0 in Ωe, (1)

with the boundary conditions as

si(−∇φi) · eρ = se(−∇φe) · eρ on ∂Ωm,

= Cm∂tvm + gl(vm − Vrest) + jep, (2)
φe = −3ae(t) cos θ on ∂Ω, (3)

where ∇2 = ∂ρρ + ∂ρ/ρ + ∂θθ/ρ
2, ∇ = eρ∂ρ + eθ∂θ/ρ, and

∂Ωm denotes the cell membrane and ∂Ω the outer Dirichlet
boudary (see Fig. 1). The function vm(t, θ) is the transmem-
brane potential defined as φi(t, a, θ)−φe(t, a, θ), and jep(t, θ)
the current density through pores at time t and angle θ. The
control variable e(t) stands for the input electric field and
Vrest for the rest potential. The constant si (or se) denotes
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the conductivity of medium inside (or outside) the cell. The
boundary condition on the cell membrane ∂Ωm is based on
the equation of current continuity along ρ-axis.

The dynamics of number density of pores on the cell
membrane, denoted by nep(t, θ), are represented by the fol-
lowing differential equation:

∂tnep = αe(vm/Vep)2 {
1 − (nep/N0)e−q(vm/Vep)2}

. (4)

The current through one pore with radius r at time t and
angle θ, denoted by iep(t, θ; r), is represented by

iep(t, θ; r) = vm(t, θ)/{Rep(r) + 2Rin(r)}, (5)

where we introduce the two resistances Rep(r) := h/(πsr2)
and Rin(r) := 1/(4sr). In actual simulations, the surface
of cell is discretized in θ from 0 to π with length ∆θ. Let
us denote by Ai a potion of the cell area for each discrete
angle θi. The total current through pores inside a small
portion Ai at time t, denoted as jep(t, θi)Ai, is approximately
represented by

jep(t, θi)Ai ≈
Ni(t)∑
j=1

iep(vm(t, θi); r j), (6)

where we write iep as a function of the transmembrane po-
tential vm, because it is uniquely determined by vm and
r. Here the number Ni(t) of pores in Ai is defined as
[
∫

Ai
nepdA], where [•] denotes the floor function over R.

Then, we have the current density jep(t, θi) at time t and
discrete angle θi as follows:

jep(t, θi) =
Ni(t)∑
j=1

iep(vm(t, θi); r j)
Ai

. (7)

It is here supposed that each pore is initially created with
radius r∗ and changes its size to minimize the energy of the
entire membrane. For a cell with pores of the total number
N(t) = [

∫
A nepdA] at time t (where A denotes the cell sur-

face with area 4πa2), the time evolution of j-th pore with
radius r j at angle θ is represented by

ṙ j = −
D

kBT
∂

∂r j
W(r, vm(t, θ), σeff(r)), (8)

where j = 1, 2, . . . ,N(t), ṙ j := dr j/dt, r j ≥ r∗, and r :=
[r1, r2, . . . , rN(t)]> (where> denotes the transpose operation
of vectors). The function W stands for the total energy of
cell membrane, given as

W(r, vm(t, θ), σeff) =

N(t)∑
j=1

{
−

∫ r j

0
F(r j, vm(t, θ j))dr

+β(r∗/r j)4 + 2πγr j − πσeffr2
j

}
. (9)

The first term on the right-hand side denotes the contribu-
tion of transmembrane potential vm to energy. The function
F is the electric force acting on a discrete pore with toroidal
geometry, given as

F(r, vm) =
Fmax

1 + rh/(r + rt)
v2

m. (10)

The second term accounts for the Steric repulsion of lipid
heads in the membrane, the third term for the edge energy
of pore perimeter, and the fourth term for the effect of mem-
brane tension to energy. The quantity σeff is the effective
tension of the membrane, given as

σeff(r) = 2σ′ − 2σ′ − σ0

(1 − Aep/A)2 , Aep =

N(t)∑
j=1

πr2
j . (11)

The dynamical system described by (1), (4), and (8) is
infinite-dimensional, nonlinear, and hybrid, because it con-
tains a quantized operation. The dimension of the part of
phase space spanned by pore radii r changes as time in-
creases. In this paper, we perform numerical simulations of
the system by applying an appropriate discretization tech-
nique in space and time to it.

3. Numerical Simulations

We perform numerical simulations of the model in or-
der to investigate the use of AM electric field to induce the
electroporation. The protocol of input electric field e(t) is
firstly introduced in Sec. 3.1. Results on numerical simula-
tions of the model are described in Secs. 3.2 and 3.3.

3.1. Protocol of Input Electric Field

In this study, determining the protocol of input electric
field e(t) is crucial. In the transitional electroporation pro-
cess, the following electric field with constant amplitude E
is used:

e(t) = E. (12)

Here we consider the following protocol of input electric
field:

e(t) = E
{

1 + ε sin
(

2π
T

t + ϕ
)}
, (13)

where ε denotes the modulation factor, T the modulation
period, and ϕ its initial phase. The protocol in the case
of ε = 0 corresponds to the transitional one with constant
amplitude.

The period T of the AM electric field is determined as
follows. Under a constant electric field E, the transmem-
brane potential vm(t, θ) for the first passive charging process
without electroplated pore is represented in [9] by

vm(t, a, θ) =
3
2

aE(1 − e−t/τ) cos θ + Vrest, (14)

where τ denotes the time constant given by

τ = aCm

(
1
si
+

1
2se

)
. (15)

The existence of τ possibly affects the electroporation ex-
posed to alternating electric fields. In the parameter setting
of [9], the value of τ is 1.45 µs. According to the criti-
cal value τ, we choose T and use the parameters of input
electric field summarized in Tab. 1. Here we choose the
maximum value of AM electric field in comparison with
the case of constant electric field: see Fig. 2A. The other
parameters in the model are fixed at the same values as in
[9].
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Figure 2: Numerical simulations of short-term dynamics in electroporation of a single spherical cell exposed to electric
fields: (A) input electric fields; (B) transmembrane potentials at θ = 0 and π; (C) total number of pores; and (D) maximal
radius of pore.

Table 1: Parameters of input electric field
parameter value

E 40 kV/m (constant case)
20 kV/m (AM case)

ε 1
T 0.5 µs, 1 µs, 2 µs, 3 µs
ϕ 0 rad

3.2. Short-term Dynamics

First, we investigate short-term dynamics of the electro-
poration process up to a few micro seconds, in which the
cell membrane is passively charged and multiple pores are
created. Fig. 2 presents numerical results on the short-term
dynamics from 0 s to 5 µs. The input electric fields e(t) are
shown in Fig. 2A. The time changes of transmembrane po-
tentials vm(t, θ) at θ = 0 (depolarized pole in the case of
constant field) and π (hyper polarized pole), total number
of pores, and maximum radius are also shown in Figs. 2B,
C, and D. The results in the case of constant field, denoted
by a red line, are reported in Fig. 2 of [9]. Note that the re-
sults are slightly different because of the choice of cell por-
tion Ai and the difference of numerical methods. Due to the
alternating nature of e(t), the transmembrane potentials in
Fig. 2B behave in an oscillatory manner. In Fig. 2C, the to-
tal number of pores change in a different manner among the
four cases, and the number of pores in the case of T = 3 µm
becomes close to that in the case of constant field. Also, in

Fig. 2D, the maximum radii grow in both cases of constant
and modulated fields. These results imply that an AM elec-
tric field induces the electroporation.

3.3. Mid-term Dynamics

Next, we investigate mid-term dynamics of the electro-
poration from a few micro seconds to a mili second, in
which the created pores evolve. Fig.3 shows the time evo-
lution of pore distributions that is sampled at 30 µs, 100 µs,
and 1 ms. The three cases are shown in (A) constant field,
(B) AM field at T = 1 µs, and (C) at T = 3 µs. Here we
do not plot the number of pores with radii of less than 2 ns,
which form a dominant group in pore distributions. The
results in the case of constant field, denoted by A, are re-
ported in Fig. 4 of [9]. The distributions evolve with time in
both the cases of constant and modulated fields. The peak
of distributions around radius r = 20 ns appears for both
the cases. These suggest that a created pore evolves under
an AM electric field.

4. Concluding Remarks

In this paper, we have investigated the multiscale phe-
nomenon of electroporation in a single spherical cell ex-
posed to AM electric fields. Numerical simulations of the
model suggest that an AM electric field induces the elec-
troporation and a created pore substantially evolves under
the AM electric field.
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Figure 3: Numerical simulations of mid-term dynamics in electroporation of a single spherical cell exposed to electric
fields. Time evolution of pore distributions is traced in the cases of (A) constant field, (B) AM field at T = 1 µs, and (C)
at T = 3 µs.

Many follow-up studies of this work exist: (i) simula-
tions of long-term dynamics on the resealing of pores and
(ii) multiphysics simulations of the phenomenon by consid-
ering the change of cell shape and the movement of con-
ductive fluid. The former topic in (ii) is related to elec-
trohydrodynamics of a giant vesicle [10, 11], which is a
candidate material of experimental valuation of the current
work.
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