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Abstract 

The effects of noise on transient energy localization in 

an array of coupled nonlinear oscillators are examined 

in this work.  The oscillators in the considered arrays 

are identical to each other.  Results obtained through 

simulations of deterministic systems are compared to 

those obtained through Euler-Maruyama scheme based 

simulations with the corresponding stochastic systems. 

To complement the numerical studies, a Fokker-Planck 

formalism is also used to analyze the response of the 

system in the presence of noise. Transient localization 

phenomena are explored by using time domain and 

time-frequency analyses, and the insights gained are 

discussed. Although this type of localization can be 

detrimental to the performance of a system, the intent 

of this study is to further our understanding of this 

behavior and use it for the benefit of a nonlinear 

system.  

 

1. Introduction 

Noise can produce significant changes in the response 

of nonlinear systems.  These effects have traditionally 

been perceived as undesirable; however noise can lead 

to desirable benefits [1, 2].  Though the effects of noise 

have been examined for nonlinear oscillator arrays 

subjected to harmonic inputs [3-5], effects of noise on 

transient energy localizations could be of importance as 

well.  In this article, the authors explore phenomena in 

two different arrays and examine how noise can be 

used in a beneficial manner.   In each case, the system 

is excited with a sinc pulse.  One of the systems is an 

array of bistable Duffing oscillators, and through a 

study of this system, it is illustrated that noise can 

enhance wave-like phenomenon.  The second system is 

an array of nonlinearly coupled monostable oscillators, 

which is studied to show that noise can suppress a 

travelling wave, by transferring energy to low-

frequency components. 

 

The Euler-Maruyama algorithm [6] is used to 

numerically simulate the considered systems.  The 

Fokker-Planck equation [7] associated with each 

system is also studied.  Results obtained from the 

corresponding moment evolution equations will be 

included in the presentation.  

 

2. Nonlinear oscillator arrays 

The equations of motion for the considered oscillator 

array can be written in the form 
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Figure 1.  An array of nonlinear coupled oscillators.  Each mass is coupled to adjacent masses with linear and nonlinear 

springs, and linear dampers.  In addition, each mass is attached to a fixed local point through linear and nonlinear 

springs, and linear dampers. 

 

 

Nomenclature 

xi position of ith oscillator 

xi,1 position of ith oscillator in state space 

xi,2 velocity of ith oscillator in state space 

mi mass of ith oscillator 

k0,i linear coupling spring on left side of ith 

oscillator 

k1,i linear spring constant of ith oscillator 

k2,i nonlinear spring constant of ith oscillator 

k3,i nonlinear coupling spring on left side of ith 

oscillator 

Ki = k0,i + k0,i+1 + k1,i 

ci  damping of ith oscillator 

F forcing amplitude �� (�)  white noise (derivative of Wiener process) 

σ noise amplitude 

sinc sinc pulse which lasts for one second 

 

By setting the k2 (k3) terms equal to zero, the system 

becomes an array of monostable oscillators (an array of 

bistable Duffing oscillators).  The Fokker-Planck 

equation for the ith oscillator of these systems can be 

written as follows: 
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Further analysis of the Fokker–Planck equation, which 

is omitted here for brevity, will be included in the 

presentation. 

 

3. Array of coupled bistable Duffing oscillators 

For this system, the k3 terms are set equal to zero.  The 

oscillators are initialized in their left stable equilibrium 

position and the first oscillator is excited with a sinc 

pulse during the first second.  The pulse can be seen to 

have little effect on the other oscillators as it travels 

through the array, as shown in the upper left portion of 

Figure 2.  By adding Gaussian white noise, a switching, 

wave-like propagation is observed, where oscillators 

settle into their right stable equilibrium positions, as 

shown in the right portion of Figure 2.
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Figure 2.  The sinc pulse alone does not cause all of the 

oscillators to switch from their left well to their right well.  

By using noise (applied to all oscillators), the switching, 

wave-like phenomenon is seen to progress through the array.  

For a moderate amount of noise, the switching behavior can 

only go through a portion of the array.  A higher noise level 

induces all oscillators to switch wells. 

 
 

4. Array of nonlinearly coupled monostable 

oscillators 

To realize this system, the k2 terms are set equal to 

zero. The oscillators are initialized at their equilibrium 

position and excited by a sinc function at the first 

oscillator.  For this set of parameter values, the noise 

acts to attenuate the wave pulse as it travels through the 

array.  This can be seen in the wavelet coefficients of 

the oscillator displacements.  However, low-frequency 

components are introduced because of the noise as 

well.  If better understood, this noise-influenced 

phenomenon could be used to inhibit wave 

propagation. 

 

 

 

 

 

 

 
Figure 3. Wave propagation in array, caused by sinc 

pulse. 
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a)  b)  

c)  d)  

 

Figure 4. a) and b) Magnitude of wavelet coefficients of 

oscillator displacements with no noise; c) and d) 

Magnitude of wavelet coefficients of oscillator 

displacements with noise (σ = 0.1). With addition of noise, 

the wave pulse propagating through the oscillators is 

attenuated slightly at 1.5 Hz. 
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