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Abstract— P/T Petri nets are one of the useful models
for discrete event systems. And a firing count vector for
transitions is one of the key concepts to describe and eval-
uate algebraically their behavior. To consider the reacha-
bility, from an initial state called an initial marking, M0 to
destination state called a destination marking Md are the
fundamental problems of Petri nets. There are some meth-
ods to solve such reachability problems. One method is
to use the coverability(reachability) tree, but the method
requires a huge amount of calculation in general. On the
other hand, the method to use matrix equations and reduc-
tion techniques has the advantage, because the method can
utilise the algebraic equation properties of Petri nets. In
this paper, we proposed an algebraic approach to reachabil-
ity problems using Fourier-Motzkin method. Not only par-
ticular solutions and elementary T-invariants are obtained
from the augmented system of state equation by Fourier-
Motzkin method, but also the expansion coefficients of the
nonnegative integer solution to represent state equations
as Ax = b can be obtained by the same algorithm of the
Fourier-Motzkin method.

1. Introduction

A Petri net is a particular kind of directed graph, together
with an initial state called the initial markings, M0. The
underlying graph of a Petri net is a directed, weighted, bi-
partite graph consisting of two kinds of notes, called places
and transitions, where arcs are either from a place to a tran-
sition or from a transition to a place. A state or marking in
a Petri net is changed according to the firing rules[1],[2].
Such Petri nets are effectively used for modeling, analyz-
ing, and verifying many discrete event systems[1],[2].

In this paper, we concern structural analysis based on the
linear algebra techniques and the state equation Ax = b :=
Md−M0, where M0 and Md are initial and destination mark-
ing vectors, respectively. All generators for T-invariants
and all minimal inhomogeneous(i.e., particular) solutions
are needed for discussing the feasibility of a group of firing
count vectors, x, for the fixed b := Md − M0[3],[4],[5],
where any firing count vector is expanded by means of

T-invariant generators and particular solutions[5]. How-
ever, it is difficult, in general, to find the nonnegative ra-
tional/integer scalar expansion-coefficients. In this paper,
we also consider how to find systematically those coeffi-
cients through the use of the well-known Fourier-Motzkin
method[6],[7].

In section 2, preliminaries are given, and how to find ex-
pansion coefficients are described in section 3. In section 4,
an example for finding expansion coefficients is described.
And section 5 is the conclusion of this paper.

2. Preliminaries

2.1. State Equation

If the destination marking Md was assumed to be reach-
able from initial marking M0 through the firing sequence as
{t1, t2, · · · , td}, the state equation can be expressed as

Md = M0 + A
d∑

k=1

tk (1)

and eq.(1) can be described like as eq.(2) when A ∈
Zm×n, b = Md − M0 ∈ Zm×1, x =

∑d
k=1 tk ∈ Zn×1

+

Ax = b. (2)

Then we can obtain the firing count vector x to solve the
solutions of eq.(2), from initial marking M0 ∈ Zm×1

+ to des-
tination marking Md ∈ Zm×1

+ .

2.2. Fourier-Motzkin method

The Fourier-Motzkin method is to obtain the set of all
elementary vector solutions as the nonnegative integer so-
lutions of Ax = 0m×1. And the algorithm of the Fourier-
Motzkin method is as follows[6],[7].
<Algorithm of Fourier-Motzkin method>

Input: Incidence matrix A ∈ Zm×n, m, and n.
Output: The set of T-invariants including all minimal sup-
port T-invariants.
Initialization: The matrix B is constructed by adjoining the
identity matrix En×n to the bottom of the incidence matrix
A ∈ Zm×n, with B = [AT , E]T ∈ Z(m+n)×n.
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The following operations a), b) are repeated from i = 1
to m = |P|, where |P| means the cardinality of the place set
P.

a) Add to the matrix B all the columns which are linear
combinations of pairs of columns of B and which annul the
i-th row of B.

b) Eliminate from B the columns in which the i-th ele-
ment is nonzero.

When this algorithm has finished, each column of the
submatrix C ∈ Zn×r

+ which is obtained by deleting the
rows from the first to the m-th from the final outputted
matrix B ∈ Z(m+n)×r

+ is a T-invariant. However, in gen-
eral, this submatrix C includes also non-minimal-support
T-invariants[7]. Therefore if the following operation c) is
added and applied to C, only minimal support T-invariants
are obtained.
c) Each column vector ui ∈ Zn×1 which satisfies the rank
condition q(ui) =rankA′(ui)) + 2 is removed from the sub-
matrix C = [ui] ∈ Zn×r

+ . Here, q(ui) is the number of
nonzero elements of ui ∈ Zn×1

+ for Aui = 0m×1 and A′(ui)
is composed of the columns of A, of which columns are
corresponding to nonzero elements of ui ∈ Zn×1

+ .

But, this method can be applied to Ax = 0, and this
means that obtained solutions are T-invariants. So, to ob-
tain the particular solutions(firing count vectors), we need
to make such changes to the eq.(2) considering the aug-
mented incidence matrix as follows:

Ã = [ A − b ] ∈ Zm×(n+1). (3)

then eq.(2) would be expressed by eq.(3) and augmented
x̃ ∈ Zn+1,

Ãx̃ = 0. (4)

Here, eq.(4) can be applied to the algorithm of §2.2.

3. Finding Expansion Coefficients for a Firing Count
Vector by T-Invariants and Particular Solutions

§2.2 expressed how to obtain nonnegative solutions x of
Ax = b using the algorithm of the Fourier-Motzkin method.
Finding expansion coefficients are useful for analyzing be-
havior verification of P/T Petri nets efficiently[8].

3.1. An Arbitrary Firing Count Vector by Means of T-
Invariants and Particular Solutions

A firing count vector x ∈ Zn×1
+ (x ∈ X) is expressed by

using u(4)
i ∈ U4 = “the set of minimal support T-invariants”

and v(4)
j ∈ V4 = “the set of fundamental particular solu-

tions” as follows[5]:

x =
∑l4

i=1α
(4)
i u(4)

i +
∑k4

j=1β
(4)
j v(4)

j ,
∑k4

j=1β
(4)
j = 1, (5)

where l4 = |U4|, k4 = |V4|, and α(4)
i , β

(4)
j ∈ Q1×1

+ .
We call eq.(5) as the level 4 expression in this paper.

Moreover we have another expression for x ∈ Zn×1
+ if we

use U5 = {U4,U5\U4} = “the set of minimal T-invariants”
and V5 = {V4,V5\V4} = “the set of minimal particular so-
lutions” as follows[5]:

x =
∑l5

i=1α
(5)
i u(5)

i +
∑k5

j=1β
(5)
j v(5)

j , (6)

where
∑k5

j=1β
(5)
j = 1, l5 = |U5|, k5 = |V5|, and α(5)

i , β
(5)
j ∈

Z1×1
+ . Then eq.(6) is rewritten as follows

x =
∑l5

i=1α
(5)
i u(5)

i + v(5)
j , (7)

where β(5)
j = 1, v(5)

j ∈ V5, and α(5)
i ∈ Z1×1

+ . We call eq.(6)
or (7) as the level 5 expression in this paper. After that we
discuss about the level 5 here , and also eq.(7) is rewritten
as follows:

x =
l∑

i=1

αiui + v j (8)

where αi ∈ Z1×1
+ , ui ∈ U := { ui ∈ Zn×1

+ ; Ax = b T-
invariants, and i = 1, 2, · · · , l }, v j ∈ V := { v j ∈ Zn×1

+ ; Ax =
b particular solutions, j = 1, 2, · · · , k }, after here.

3.2. How to Find Expansion Coefficients

Eq.(8) means any nonnegative solutions (firing count
vectors) of state equation eq.(2) can be obtained by the lin-
ear combinations of T-invariants and a particular solution.

When U, V , and x ∈ Zn×1
+ are given, eq.(8) can be rewrit-

ten as follows:
l∑

i=1

αiui = x − v j (9)

by transposition of v j. And eq.(9) expresses

[ u1, u2, · · · , ul ] α = [ x − v j ]. (10)

And on eq.(10),

[ u1, u2, · · · , ul ] → A′, α→ x′, [ x − v j ] → b′

are transposed, eq.(10) can be expressed as follows:

A′x′ = b′. (11)

This means that eq.(11) is the same type of equation as
eq.(2). Then the same algorithm of the Fourier-Motzkin
method expressed in §2.2 can be also applied to such prob-
lems as finding expansion coefficients for any reachable fir-
ing count vectors by T-invariants and a particular solution.
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4. Example

Let’s consider a Petri net shown in Fig.1, where a black
dot on place p1 is an initial marking, and small white circles
on places are destination markings.

　　　　　 Fig.1 Example of Petri nets.

4.1. T-invariants and particular solutions

On this case, the incidence matrix of A ∈ Zm×n is

A =

 −2 −1 0 0 1
1 2 −1 −1 0
0 0 2 1 −1

 ∈ Z3×5,

and the difference of marking b ∈ Zm×1 from M0 ∈ Zm×1
+ to

Md ∈ Zm×1
+ is

b = Md − M0 =

 1
1
1

 −
 1

0
0

 =
 0

1
1

 ∈ Z3×1.

Then the augmented matrix of A can be described as fol-
lows:

Ã =

 −2 −1 0 0 1 0
1 2 −1 −1 0 −1
0 0 2 1 −1 −1

 ∈ Z3×6

by eq.(3). And by the algorithm in §2.2, we can express
the matrix B of Fig.1 using B = [ Ã E ] ∈ Z(m+n+1)×(n+1), as
follows:

B =



−2 −1 0 0 1 0
1 2 −1 −1 0 −1
0 0 2 1 −1 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

From matrix B, T-invariants and particular solutions are
obtained by using the algorithm of the Fourier-Motzkin

method as follows:

u1 = ( 1 0 1 0 2 )T , v1 = ( 0 1 1 0 1 )T ,
u2 = ( 1 1 0 3 3 )T , v2 = ( 0 2 0 3 2 )T ,

(12)

where ui ∈ U := {ui ∈ Zn×1
+ } ; Ax = b T-invariants and

v j ∈ V := {v j ∈ Zn×1
+ } ; Ax = b particular solutions.

4.2. Expansion coefficients

Here, let’s consider about one firing count vector

x = ( 3 2 3 3 8 )T , (13)

and try to obtain the expansion coefficients α with one of
the particular solutions v1 = ( 0 1 1 0 1 )T using the same
algorithm as the Fourier-Motzkin method used above.

On this case, b′ on eq.(11) is

b′ = [ x − v1 ]
= ( 3 2 3 3 8 )T − ( 0 1 1 0 1 )T

= ( 3 1 2 3 7 )T ,

and A′ on eq.(11) is

A′ = [ u1, u2 ]

=


1 1
0 1
1 0
0 3
2 3

 .
Then in this case, matrix B of eq.(11) can be described as
follows:

B =



1 1 −3
0 1 −1
1 0 −2
0 3 −3
2 3 −7
1 0 0
0 1 0
0 0 1


because of eq.(3) and B = [ Ã E ]. Add to the matrix B
all the columns which are linear combinations of pairs of
columns which annul the 1st row of B. In this case there are
2 pairs. The 1st pair is in the 1st and 3rd columns of above
B. and 2nd pair is in the 2nd and 3rd columns of above B.
Add to the matrix B the 2 columns which annul the 1st row
of B expressed as follows:

B =



1 1 −3 0 0
0 1 −1 −1 2
1 0 −2 1 −2
0 3 −3 −3 6
2 3 −7 −1 2
1 0 0 3 0
0 1 0 0 3
0 0 1 1 1


.
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Eliminate from B the columns which the 1st element is
nonzero, and add the column which is the linear combi-
nation of a pair of columns which annul the 2nd row of B.

B =



0 0 0
−1 2 0

1 −2 0
−3 6 0
−1 2 0

3 0 6
0 3 3
1 1 3


And devide all elements of the 3rd column by the base
number 3.

B =



0
0
0
0
0
2
1
1


Then we can obtain the coefficients, and try to check the
coefficients using eq.(8)

x =
l∑

i=1

αiui + v j

with the obtained coefficients, T-invariants and one partic-
ular solution from eq.(12) as follows:

α1 = 2, α2 = 1,
u1 = ( 1 0 1 0 2 )T , u2 = ( 1 1 0 3 3 )T ,
v1 = ( 0 1 1 0 1 )T .

Then, the firing count vector can be calculated using the
obtained coefficients just the same as eq.(13) as follows:

x = 2 ( 1 0 1 0 2 )T + ( 1 1 0 3 3 )T + ( 0 1 1 0 1 )T

= ( 3 2 3 3 8 )T .

5. Conclusions

For any firing count vector x ∈ Zn×1
+ expressed by means

of minimal support or minimal T-invariants and fundamen-
tal or minimal particular solutions for state equation in P/T
Petri nets, how to find such T-invariants and particular solu-
tions has been shown through the Fourier-Motzkin method.
Finding expansion coefficients are useful for analyzing be-
haviour verification of P/T Petri nets efficiently. In this pa-
per, we described that the same algorithm of the Fourier-
Motzkin method as the algorithm for obtaining T-invariants
and particular solutions can be also applied to obtain the ex-
pansion coefficients. These results are useful for the reach-
ability analysis and the scheduling for the fixed initial and
destination markings.

In future studies, we’d like to improve the algorithm for
derivation of unobtainable solutions in P/T Petri nets using
Fourier-Motzkin Method.
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