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Abstract-An efficient technique which combines the ultra-wide 

band characteristic basis function method (UCBFM) and the im-
proved adaptive model-based parameter estimation (IA-MBPE) is 
introduced for analyzing the wide band electromagnetic scatter-
ing problems. The ultra-wide band characteristic basis functions 
(UCBFs) are generated from characteristic basis functions at the 
highest frequency in the range of interest. These UCBFs are also 
available for the entire band. The IA-MBPE is the application of 
improved adaptive sampling algorithm (IASA) in MBPE. The 
high sampling efficiency in IASA is realized through extending 
the regions of searching for the sampling points from one to two 
simultaneously with the help of parallel computation algorithm. 
The combination of UCBFM and IA-MBPE results in significant 
enhancement of computational efficiency reduction in MoM solu-
tion. Numerical results from two examples of wide band frequen-
cy responses of monostatic RCSs validate the proposed method. 

Index Term-ultra-wide band characteristic basis function 
method; model-based parameter estimation; improved adaptive 
sampling algorithm; method of moments 

I. INTRODUCTION 

The computation of the electromagnetic radar cross section 

(RCS) by the complex objects with large electrical size, such 

as ships on the sea and tanks on the ground, is important for 

military applications. Although the parallel technology of the 

computer is rapidly developing, it is still an arduous task to 

create a large RCS database of those objects. Meanwhile the 

computation by using numerical method, such as method of 

moments (MoM) [1], is very time consuming. The MoM not 

only places a heavy burden on the CPU time as well as 

memory requirements but also requires the impedance matrix 

to be generated and solved for each frequency point. Hence, if 

the response over a wide frequency band is of interest, the 

MoM is more computationally intensive. 

Several techniques have been proposed to alleviate this prob-

lem. In [2-3], the characteristic basis function method (CBFM), 

is able to reduce the size of the MoM matrix. In the CBFM, the 

object is divided into a number of blocks, and high-level basis 

functions called characteristic basis functions (CBFs) are de-

rived for these blocks, which are discretized by using the con-

ventional triangular patch segmentation and Rao-Wilton-

Glisson (RWG) basis functions [4]. In[5-7], an interpolation 

model known as the model-based parameter estimation 

(MBPE), which takes into account the physics behind the prob-

lem, is proposed to minimize the computational cost with a 

desired accuracy. The MBPE is based on the rational function 

interpolation. Since it needs solving MoM matrix equation at 

sampling points directly, the MBPE can hardly deal with wide-

band electromagnetic scattering problems from electrically 

large objects. So in [8], MBPE combined with AMCBFM, is 

proposed to analyze wide band electromagnetic scattering 

problems. This method uses the mutual coupling method for 

generating CBFs, that is time consuming and memory demand-

ing, in CBFM and applies an adaptive sampling algorithm 

(ASA) [9] for MBPE. In [10], an improved adaptive sampling 

algorithm (IASA) is presented to obtain the high sampling effi-

ciency. Since the CBFs depend upon the frequency, they need 

to be generated repeatedly for each frequency. Hence, in [11], 

the ultra-wide band characteristic basis function method 

(UCBFM) is developed, without having the generation of 

CBFs for each frequency repeatedly. The CBFs calculated at 

the highest, termed UCBFs, entail the electromagnetic behav-

ior at lower frequency range; thus, it follows that they can also 

be employed at lower frequencies without going through the 

time consuming step of generating them again. However, in the 

UCBFM, it is still time consuming for the computation of 

wideband RCS since it requires repeated solving of the reduced 

matrix equations at each frequency. 

In this paper, the combination of the UCBFM and IA-MBPE 

is introduced for fast evaluation of wide band scattering prob-

lems. In the following sections, the principles of UCBFM and 

the IA-MBPE are outlined firstly, and then the combination 

scheme of the UCBFM/IA-MBPE method is developed. Final-

ly, two classical scattering problems are analyzed and the com-

parisons of the proposed method and traditional methods are 

provided. 

II. FORMULATION 

A. UCBF Method[11] 

Let us consider a complex 3-D object illuminated by a plane 

wave. In a conventional MoM, the whole surface is divided 

into triangles with size ranging from to . Applying 
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this to the electric field integral equation, one can obtain a 

dense and complex system of the form 
 

      Z k I k V k  (1) 

 

In (1), Z is the MoM matrix of dimension N×N, I and V are 

vectors of dimension N×1, where  N is the number of unknown 

current coefficients and k is the wave number of the free space. 

For large and complex problem, the matrix filling and matrix 

equation solving are quite time consuming. 

The CBFM begins by dividing the object to be analyzed into 

blocks. For the best division scheme and the number of blocks 

M one may refer to [12]. These blocks are characterized 

through a set of CBFs, constructed by exciting each block with 

multiple plane waves (MPW), incident from NPW uniformly 

spaced  and -angles. To calculate the CBFs on the generic 

thi block , one must solve the following system 
 

   CBF MPW

ii i iZ k J V  (2) 

 

In (2), Zii is an Ni ×Ni sub-matrix corresponding to the 

thi block, CBF

i
J  is a Ni ×NPW matrix containing original CBFs, 

and MPW

iV  is a Ni ×NPW matrix containing excitation vectors, 

where Ni  is the number of unknowns relative to ith block. In 

order to extract Zii from the original MoM matrix, a matrix 

segmentation procedure can be used. Next, a new set of or-

thogonal basis functions, which are linear combinations of the 

original CBFs, are constructed via the singular value decompo-

sition (SVD) approach. Thus, the redundant information be-

cause of the overestimation is eliminated. For simplicity, one 

can assume that the average number of CBFs after SVD is K. 

Consequently, the solution to the entire problem is expressed 

as a linear combination of the M×K CBFs, as follows 

    
1 1

( ) k

M K
CBFk

m m

m k

I k k J k
 

  (3) 

where nCBF

mJ is the nth CBF of the mth lock. By using the above 

CBFs, the original large MoM matrix can be reduced, and un-

knowns are changed to weight coefficient vector  whose or-

der is much smaller than that of the original current coefficient 

vector I. Finally, after solving the reduced system and substi-

tuting solution back to (3), one can obtain the solution of single 

frequency point. 

The ultra-wide band characteristic basis functions (UCBFs) 

is the CBFs generated at the highest frequency. Since the 

UCBFs can adequately represent the solution in the entire band 

of interest, they are used for lower frequencies without going 

through the time consuming step of generating them again.  

Fig.1 shows the flowchart of the UCBFM. 

 

B. IA-MBPE Method[10] 

The rational function in the form of a fractional polynomial 

function of the -order numerator and the -order denominator 

employed commonly in MBPE is represented as 
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Fig 1.  Flowchart of the UCBFM. 

 
where R(f) represents a frequency-domain fitting model and f is 

the frequency of interest. Since there are n+d+1 unknown coef-

ficients (q0 being arbitrary), a set of T+1=sample points 

fi are required to completely determine R(f). R(f) will then be a 

curve passing through Si at fi for i=0,1,...,T. We assume that R(f) 

exists and has no unattainable frequency points [13] (frequency 

at which R(f) has a common zero in the numerator and denom-

inator polynomials) for the scattering parameter model that we 

are trying to attain. 

The interpolation function R(f) can be calculated with the re-

cursion formulas in (6)-(7) initialized with (5) and using the 

inverse differences defined in (8)-(9). 

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The inverse differences in(8)-(9), determined recursively 

from the sample points, are essentially the polynomial coeffi-

cients defining R(f). The rational expressions Rt(f) are partial 

fractions of (4). Every new sample point increases the order of 

the rational function by one, until R(f)= RT(f).  

The IASA is defined to work in the interval [f0, f1]. Define 

the residual error as  

      1t t tE f R f R f   (10) 
 
Suppose the accuracy is As a first step, an arbitrary third 

frequency point  f2 is selected which lies in the interval [f0, f1]. 

The interpolation function R1(f) is generated from the samples 

(f0, S0) and (f2, S2), while R2(f) is recursively updated using (6)-

(9) and the sample (f1, S1). St is determined from CEM analyzes 

at ft. The residual E2(f) is determined in the interval [f0, f2] by 

evaluating it at a large number of equi-spaced frequency points 

over that frequency band. At the maximum of the residual, a 

new sample point (f3, S3) is selected. 

For iteration t, the algorithm is used to calculate t, Pt and Qt 

from (6)-(9) in order to recursively determine Rt(f). Assuming 

that the sample (ft, St) was selected in the interval [fi, fj], the 

residual Et(f) is determined in the intervals [f0, fi] and [fj, f1]. 

Two new sample points (ft+1, St+1) and (ft+2, St+2) are chosen at 

the maximum of the relative residual in the intervals [f0, fi] and 

[fj, f1], respectively. The process is repeated until the relative 

residual becomes less than he IASA automatically selects 

and minimizes the number of sample points. 

 

C. UCBFM/IA-MBPE Method 

The frequency point fmax is calculated first by the UCBFM 

for storing the UCBFs. The flowchart of UCBFM/IA-MBPE is 

shown in Fig.2. The frequency point fmax, fmin and f2 are select-

ed firstly and then ft (t>2) is selected. St represents for the RCS, 

which taking the UCBFM analyzing at  ft. t={f0, f1, ... , ft}. 
 

III. NUMERICAL RESULTS 

To demonstrate the efficiency and accuracy of the UCBFM/ 

IA-MBPE technique, two numerical examples are investigated. 

The objects of the numerical simulations are illuminated by a 

normally incident theta-polarized plane wave from in= 

in
and the frequency range starts from 0.1GHz and 

terminates at 0.3GHz. We set  for the IASA and chose 

NPW = 800 for UCBFM. All the simulations were run on a 

notebook equipped with 2 Dual Core at 2.3GHz (only one core 

was used) and 8GB of RAM. 

The first example is the monostatic RCS by a PEC ellipsoid 

shown in Fig.3. The geometry is automatically divided into 

four blocks and the discretisation in triangular patches involves  

UCBFM
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Fig 2. Flowchart of UCBFM/IA-MBPE technique. 

(a) ellipsoid (b) missile

  

Fig 3. Geometries of two examples. 
 

almost 2115 unknowns. After SVD procedure we totally obtain 

283 UCBFs. The results are compared with those derived by 

using UCBFM and direct MoM, as shown in Fig.4. The 

monostatic RCS calculated by UCBFM/IA-MBPE coincide 

very well with direct MoM. Hence, the presented method is 

accurate in wide band electromagnetic scattering analysis. 

With a frequency increment of 1MHz, we obtain 201 sample 

points for direct MoM, while only 22 sample points are needed 

for UCBFM/IA-MBPE. To show the efficiency of the present-

ed method, the total simulation time which include matrix fill- 



TABLE I 
COMPUTATIONAL TIMES FOR THE DIFFERENT METHODS OF AN ELLIPSOID 

 MoM UCBFM MoM/IA-MBPE UCBFM/IA-MBPE 

Total 

time 
8.008 h 7.764 h 1.137 h 0.846 h 

Saving ─ 3.05% 85.80% 89.44% 
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Fig. 4 The ellipsoid monostatic RCS estimated by different methods. 
 

TABLE II 
COMPUTATIONAL TIMES FOR THE DIFFERENT METHODS OF A MISSILE 

  MoM UCBFM MoM/IA-MBPE UCBFM/IA-MBPE 

Total 

time 
35.079 h 27.986 h 11.689 h 8.306 h 

Saving ─ 20.22% 66.68% 76.33% 
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Fig. 5 The missile monostatic RCS estimated by different methods. 

 

ing time and solving time is shown in Table I. The direct MoM 

requires about 8.008 hours to obtain the solution, While only 

0.846 hours are needed for UCBFM/IA-MBPE. 

The second example is a PEC missile shown in Fig.3. The 

geometry is automatically divided into twelve blocks, and the 

discretisation in triangular patches leads to total unknowns of 

4263. After SVD procedure we obtain 765 UCBFs. Fig.5 

shows the monostatic RCS by the conductive missile. It can be 

seen from this figure that the calculated results from 

UCBFM/IA-MBPE has a good agreement with those of the 

point to point calculation by direct MoM. 

Table II shows the efficiency of the UCBFM/IA-MBPE 

method. Over the whole frequency band, the total number of  

the sample points for UCBFM/IA-MBPE is 60, while the direct 

MoM need 201 sample points. The computational time is re-

duced from 35.079 hours to 8.306 hours. 

The comparison between MoM/IA-MBPE and UCBFM/IA-

MBPE shows that the superiority of UCBFM/IA-MBPE over 

IAMBPE reveals with the increase of the size of the scatterer 

indicating that UCBFM/IA-MBPE is most suitable for the 

solving of wide band scattering problems with electrically 

large objects.  

IV. CONCLUSION 

In this paper, an efficient approach that combines the 

UCBFM with IA-MBPE is successfully implemented to fast 

and efficiently analyze wide band scattering problems. Numer-

ical results demonstrate the high accuracy and efficiency of the 

proposed hybrid method. The scattering problem of electrically 

very large and complex objects can be handled, since UCBFM 

is able to reduce the size of the MoM matrix for fast solving. 

The IA-MBPE was used in order to further speed up the wide 

band analysis. Hence, the hybrid method takes both the ad-

vantages of UCBFM and IA-MBPE and therefore can reduce 

considerable total computational time and memory require-

ments in wide band and electrically large size problems. 

 

REFERENCES 

[1] R.H. Harrington, Field Computation by Moment Methods, New York: 
Macmillan, 1968, pp.49-70. 

[2] V.V.S. Prakash and R. Mittra, “Characteristic Basis Function Method: A 
new technique for efficient solution of method of moments matrix equa-
tion,” Microwave Opt. Technol. Lett., vol.36, no.2, pp.94-100, Feb. 2003. 

[3] E. Lucente, A. Monorchio and R. Mittra, “An iteration free MoM ap-
proach based on excitation independent characteristic basis functions for 
solving large multiscale electromagnetic scattering problems,” IEEE 
Trans. Antennas Propag., vol.58, no.7, pp.999-1007, Apr. 2008. 

[4] S.M. Rao, D.R. Wilton and A.W. Glisson, “Electromagnetic scattering by 
surfaces of arbitrary shape,” IEEE Trans. Antennas Propag., vol.30, no.3, 
pp.409-418, Feb. 1982. 

[5] E. K. Miller, “Model-based parameter estimation in electromagnetic-I: 
Background and theoretical development,” Appl. Comput. Electromagn. 
Soc. Newslett., vol.10, no.3, pp.40-63, 1995. 

[6] E. K. Miller, “Model-based parameter estimation in electromagnetic-II: 
Applications to EM observables,” Appl. Comput. Electromagn. Soc. 
Newslett., vol.11, no.1, pp.35-56, 1996. 

[7] E. K. Miller, “Model-based parameter estimation in electromagnetic-III: 
Applications to EM integral equations,” Appl. Comput. Electromagn. Soc. 
Newslett., vol.10, no.3, pp.9-29, 1996. 

[8] G.-D. Han, Y.-H. Pan, B.-F. He and C.-Q, Gu, “Fast analysis for 3-D 
wide band and wide angle electromagnetic scattering characteristic by 
AMCBFM-MBPE,” Journal of Microwaves(CHINA),vol.25,no.6, pp.32-
37, Jun. 2009. 

[9] R. Lehmensiek and P. Meyer, “An efficient adaptive frequency sampling 
algorithm for model-based parameter estimation as applied to aggressive 
space mapping,” Microwave Opt. Technol. Lett., vol.24, no.1, pp.71-78, 
Jan. 2000. 

[10] J.-X. Wan, Y. Zhang, T.-M. Xiang and C.-H. Liang, “Rapid solutions of 
monostatic RCS using FMM with adaptive MBPE technique,” Chinese 
Journal of Radio Science, vol.19, no.1, pp.72-76, Feb. 2004. 

[11] M.D. Gregorio, G. Tiberi, A. Monorchio and R. Mittra, “Solution of wide 
band scattering problems using the characteristic basis function method,” 
IET Microw. Antennas Propag., vol.6, no.1, pp.60-66, Jan. 2012. 

[12] K. Konno, Q. Chen, K. Sawaya and T. Sezai, “Optimization of block size 
for CBFM in MoM,” IEEE Trans. Antennas Propag., vol.60, no.10, 
pp.4719-4724, Jan. 2012. 

[13] T.J. Rivlin, An introduction to the approximation of functions, Dover, 
New York, 1969. 

--- 67.55%

1.891 s5.828 s

Saving

UCMFM/IA-MBPEPer point(average) MoM/IA-MBPE

Solving time

95.14%

Per point(average) MoM/IA-MBPE

---

136.542 sSolving time

Saving

UCMFM/IA-MBPE

6.639 s


