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Abstract—In our previous study, we observed and an-
alyzed synchronization phenomena on ladder shape sys-
tems and 2D lattice shape systems which are constructed
by many oscillators. We discovered a wave which is a phe-
nomenon changing from in-phase to anti-phase synchro-
nization or from anti-phase to in-phase synchronization.
We call the phenomenon a phase-inversion wave.

In this study, we observe and analyze phase-inversion
waves in in-and-anti-phase synchronizations on 3D lattice
shape systems which include many van der Pol oscillators
coupled by inductors. We clarify a domain of parameters
existing phase-inversion waves, and analyze a propagation
mechanism of the phase-inversion wave.

1. Introduction
Nowadays, coupled oscillators systems attract attention

from many researchers because the systems can be ob-
served in natural world. For example, many fireflies in
south-eastern Asia blink simultaneously [1]. If a firefly is
assumed as an oscillator, we think that a group of fireflies
can be expressed as a network of coupled oscillators [2]-
[3]. Therefore, we can think that the fireflies, which blink
simultaneously, synchronize. A beat of the heart, supercon-
ductive phenomena and etc. depend on the synchronization
phenomena. In other words, researches of coupled oscilla-
tor helpful to analyze natural phenomena and to grow in-
dustries.

In our previous study, we analyzed synchronization phe-
nomena on ladder shape systems and 2D lattice shape sys-
tems which are constructed by many oscillators [4]-[5].
We discovered a phenomenon which switches phase states
between two adjacent oscillators from the in-phase to the
anti-phase synchronization or from the anti-phase to the in-
phase synchronization and continuously propagates. The
phenomenon is called a phase-inversion wave.

We can observe that phase states between adjacent os-
cillators on the 3D lattice are the in-phase synchronization
and the anti-phase synchronization alternately. The syn-
chronization state is called an in-and-anti-phase synchro-
nization. In this study, we observe and analyze the phase-
inversion waves in the in-and-anti-phase synchronizations
on coupled van der Pol oscillators by inductors as a 3D
lattice. We clarify a parameter domain of which phase-
inversion waves exist. A propagation mechanism of the
phase-inversion wave is analyzed by using computer simu-

Figure 1: Circuit model.

lations.

2. Circuit model
We show the circuit model of this study in Fig. 1. The

van der Pol oscillators are coupled by inductors as a 3D
lattice. The numbers of oscillators in x-axis, y-axis or z-
axis of this system are assumed as “N” respectively. Each
oscillator is named as OSC(k,m,n) (0 ≤ k, m and n ≤ N-1).
A voltage of each oscillator is named v(k,m,n), and a current
flowing a inductor of each oscillator is named i(k,m,n). An
equation of the nonlinear negative resistor is shown as Eq.
(1). The circuit equations are normalized by Eq. (2), these
are shown in Eqs. (3)–(4).

ir(v(k,m,n)) = −g1v(k.m,n) + g3v3
(k,m,n). (1)

i(k,m,n) =

√
Cg1
3Lg3

u(k,m,n), v(k,m,n) =
√

g1
3g3

w(k,m,n),

t = τ
√

LC, α = L
L0
, ε = g1

√
L
C .

(2)

[Center] (0 < k < N), (0 < n < N), (0 < m < N)

du(k,m,n)

dτ
= w(k,m,n), (3)

dw(k,m,n)

dτ
= −u(k,m,n) + α{u(k+1,m,n) + u(k−1,m,n)

+u(k,m+1,n) + u(k,m−1,n) + u(k,m,n+1)

+u(k,m,n−1) − 6x(k,m,n)}
+ε(w(k,m,n) − 1

3
w3

(k,m,n)).

(4)
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Figure 2: The phase-inversion waves on 3D lattice (A1: x vs y, A2: x vs z, A3: y vs z).
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Figure 3: Parameter Domain.

3. Phase-inversion waves on 3D lattice
We observe the phase-inversion waves on 3D lattice

when N=5. Each cross section of the 3D lattice is ob-
served. Phase states in cross sections are shown in Fig. 2.
The cross section is called x-y plane, x-z plane or y-z plane.
The phase-inversion waves can be observed in each plane.
In the Fig. 2, box A1 shows x-y planes when z=1, 2, 3, 4
or 5, box A2 shows x-z planes when y=1, 2, 3, 4 or 5 and
box A3 shows y-z planes when x=1, 2, 3, 4 or 5. We can
observe the phase-inversion waves in each x column, y col-
umn and z column at the same time. Vertical axis of box B
in the Fig. 2 shows sum of voltages of adjacent oscillators,
and horizontal axis of box B is time.

The domains, which the phase-inversion waves can be
observed, are shown in Fig. 3. We investigate the domains
when α is changed from 0.01 to 0.30 every 0.01, and ε
is changed from 0.01 to 0.50 every 0.01. In the Fig. 3,

τ(k, m, n)(a)V

V τ(k+1, m, n)(a)

OSC(k, m, n)

OSC(k+1, m, n)

Time

Time

aa-1 a+1
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Figure 4: The detection method of the phase difference.

the vertical axis is nonlinearity ε, and the horizontal axis is
coupling parameter α. Parts of a shaded area shows area
which the phase-inversion waves can be observed.

4. Propagation mechanism of the phase-inversion wave
We can observe some characteristics of the phase-

inversion waves in the Fig. 2. There are propagations, re-
flections at the edges and penetrations. The propagation
can be observed in the in-and-anti-phase synchronization
in each column. We analyze the mechanism of propagation
by using phase differences between adjacent oscillators and
instantaneous frequencies.
4.1. Instantaneous frequency

The instantaneous frequency is named f(k,m,n)(a) where
“a” expresses the number of times of the positive peak
value of the voltage(see Fig. 4). Time of a-th positive peak
value of the voltage of OSC(k,m,n) is assumed as τ(k,m,n)(a).
Similarly, τ(k+1,m,n)(a), τ(k,m+1,n)(a) and τ(k,m,n+1)(a) are de-
cided. The f(k,m,n)(a) is obtained by Eq. (5).

f(k,m,n)(a) =
1

τ(k,m,n)(a) − τ(k,m,n)(a − 1)
. (5)

In 3D lattice, the number of adjacent oscillators of an os-
cillator is 6. Therefore, we have to consider 7 patterns of
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(a) 3D model

(b) x-y plane (z=2)
Figure 5: A part of the circuit model.

phase states. 1st pattern: six phase states are the in-phase
synchronization. 2nd pattern: five phase states are the in-
phase synchronization, and a phase state is the anti-phase
synchronization. 3rd pattern: four phase states are the in-
phase synchronization, and two phase states are anti-phase
synchronization. 4th pattern: three phase states are the
in-phase synchronization, and three phase states are anti-
phase synchronization. 5th pattern: two phase states are
the in-phase synchronization, and four phase states are anti-
phase synchronization. 6th pattern: a phase state is the in-
phase synchronization, and two phase states are the anti-
phase synchronization. 7th pattern: six phase states are the
anti-phase synchronization. The instantaneous frequencies
of the oscillators are called fi6a0, fi5a1, fi4a2, fi3a3, fi2a4, fi1a5
and fi0a6 respectively.
4.2. Phase difference

A phase difference Φ(k,m,n)(k+1,m,n)(a) between
OSC(k,m,n) and OSC(k+1,m,n), a phase difference
Φ(k,m,n)(k+1,m,n)(a) between OSC(k,m,n) and OSC(k,m+1,n)
and a phase difference Φ(k,m,n)(k,m,n+1)(a) between
OSC(k,m,n) and OSC(k,m,n+1) are calculated by Eq. (6)
(see Fig. 4).

Φ(k,m,n)(k+1,m,n)(a) =
τ(k,m,n)(a) − τ(k+1,m,n)(a)
τ(k,m,n)(a) − τ(k,m,n)(a − 1)

× 2π[rad],

Φ(k,m,n)(k,m+1,n)(a) =
τ(k,m,n)(a) − τ(k,m+1,n)(a)
τ(k,m,n)(a) − τ(k,m,n)(a − 1)

× 2π[rad],

Φ(k,m,n)(k,m,n+1)(a) =
τ(k,m,n)(a) − τ(k,m,n+1)(a)
τ(k,m,n)(a) − τ(k,m,n)(a − 1)

× 2π[rad].
(6)

4.3. Propagation mechanism
The propagation mechanism is shown in Table 1. Each

figure of Table 1 shows a cross section of the circuit model,
and is explained in Fig. 5. The Fig. 5(a) shows a part of
the circuit model. Fig. 5(b) shows x-y plane in Fig. 5(a)
when z=2. In figures of Table 1, the double lines show that
phase states between adjacent oscillators are the anti-phase
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Figure 6: Itinerancies of phase differences and instanta-
neous frequencies by the propagation of a phase-inversion
wave in the in-and-anti-phase synchronization.

synchronizations, the normal lines show the in-phase syn-
chronizations. A y-z plane of x=0 is called 0th y-z plane.
Itinerancies of instantaneous frequencies and phase differ-
ences are shown in Fig. 6. In Fig. 6(a), the vertical axis
is instantaneous frequency, and the horizontal axis is time.
In Fig. 6(b), the vertical axis is phase difference, and the
horizontal axis is time.

5. Conclusion
We discovered the phase-inversion waves in in-and-anti-

phase synchronizations on coupled van der Pol oscillators
by inductors as a 3D lattice. Parameter domains of exist-
ing the phase-inversion waves were made clear. Further-
more, the propagation mechanism of the phase-inversion
wave was analyzed by using phase differences between ad-
jacent oscillators and instantaneous frequencies.
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Table 1: Propagation mechanism of the phase-inversion wave.
Num Explain Figure

0

At this time, Φ(10,2,2)(11,2,2), Φ(11,1,2)(11,2,2), Φ(11,2,1)(11,2,2), Φ(12,1,2)(12,2,2), Φ(12,2,1)(12,2,2) and
Φ(12,2,2)(13,2,2) are 0 or π (see Fig. 6). Φ(11,2,2)(12,2,2), Φ(11,2,2)(11,2,3), Φ(11,2,2)(11,3,2), Φ(12,2,2)(12,2,3)
and Φ(12,2,2)(12,3,2) are π or −π (see Fig. 6). In each x-axis, the phase-inversion wave comes from
the 0th y-z plane to 10th y-z plane.

1 The phase difference Φ(10,2,2)(11,2,2) starts to change from 0 to π by the phase-inversion wave.

2

The instantaneous frequency f(11,2,2) starts to change from fi3a3 to fi2a4, because Φ(10,2,2)(11,2,2)
starts to change from 0 to π, two phase states (Φ(11,1,2)(11,2,2) and Φ(11,2,1)(11,2,2)) are the in-phase
synchronization, and other three phase states (Φ(11,2,2)(12,2,2), Φ(11,2,2)(11,2,3) and Φ(11,2,2)(11,3,2)) are
the anti-phase synchronization.

3 Φ(11,2,2)(12,2,2) starts to change −π to −2π by changing f(11,2,2).

4

f(12,2,2) starts to change from fi3a3 to fi4a2, because Φ(11,2,2)(12,2,2) starts to change from −π to −2π,
three phase states (Φ(12,1,2)(12,2,2), Φ(12,2,1)(12,2,2) and Φ(12,2,2)(13,2,2)) are the anti-phase synchro-
nization, and other two phase states (Φ(12,2,2)(12,2,3) and Φ(12,2,2)(12,3,2)) are the anti-phase synchro-
nization.

5

f(11,2,2) doesn’t arrive at fi2a4 and starts to change to fi3a3 again, because Φ(10,2,2)(11,2,2) is changing
to π, Φ(11,2,2)(12,2,2) starts to change from −π to −2π. In other words, three phase states of six phase
states around OSC(11,2,2) are becoming the in-phase synchronization and other three phase states
are becoming the anti-phase synchronization.

6 Φ(12,2,2)(13,2,2) starts to change from 0 to π by changing f(12,2,2).

7 Φ(10,2,2)(11,2,2) arrives at π and becomes to fix.

In this form, the phase-inversion wave propagates on 3D lattice. Phase states of directions of which
the phase-inversion wave does not propagate don’t change (e.x. Φ(12,2,2)(12,3,2) and Φ(11,2,2)(11,3,2))
when the phase-inversion waves propagate on 3D lattice.
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