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1 Introduction

Co-channel interference (CCI) is one of the most horrible obstacles for radio communications
systems to increase system throughput. Adaptive arrays are well known to mitigate the per-
formance degradation caused by CCI [1]. Especially, adaptive arrays based on minimum mean
square (MMSE) criteria have been investigated intentionally because they can suppress the CCI
sufficiently even if direction of arrival (DOA) of CCI varies dynamically. Actually, when the
number of arrays is NR, NR−1 signals of CCI can be only nulled by the MMSE adaptive arrays.
Hence, if more than NR signals of CCI are received, the transmission performance of the MMSE
adaptive arrays degrades seriously. On the other hand, adaptive arrays based on minimum bit
error rate (BER) criteria are known to be able to mitigate more than NR interference signals
[2, 3, 4, 5]. However, these adaptive arrays have been applied for only the binary phase shift key-
ing (BPSK) modulation, even though multi-level modulations are indispensable for increasing
the system throughput, nowadays.

This paper proposes a novel algorithm for multilevel modulation, especially, amplitude phase
shift keying (APSK) based on the minimum BER criteria. The proposed algorithm is defined
to minimize the BER function of the APSK. Therefore, the proposed algorithm is named as
the least bit error rate (LBER) algorithm for multi-level modulation. Moreover, we derive
an equation that is satisfied by the weight vector to which the proposed algorithm converges.
Furthermore, the performance of the adaptive array based on the proposed algorithm is evaluated
by computer simulation that the proposed adaptive arrays achieves superior performance even
when the number of interference signals is equal to or more than the number of the arrays.

2 System Model

In this paper, NR antennas are assumed to be put at the receiver, and one desired signal and
K − 1 interference signals are received at the receiver, simultaneously. In addition, all of the
transmission signals are APSK modulation signals. Especially, the desired signal is defined as
x0(l) =

∑M
i=1 b0,i(l)2

−id l = 1, . . . 2M where M is the number of bits conveyed by one APSK
modulation signal. In addition, b0,i(l) is an information bit defined as b0,i(l) = 2l− 1−b l

2i
c2i+1,

where bαc is the floor function that rounds the input signal α down into an integer. Obviously,
2−M+1d is the minimum Euclidean distance of the APSK signal. Moreover, the transmission
signal vector is defined as Xl = [x0(l), x1, · · · , xK−1]

T where xi i = 1,K − 1 represent the
interference signals and suffix T means transpose of a matrix or a vector. Let Yl denote the
received signal vector when transmission signal vector Xl is transmitted, the received signal can
be expressed as follows.

Yl = H(k)Xl +N . (1)

In (1), H(k) and N denote a channel matrix and an additive white Gaussian noise (AWGN)
vector, respectively. The received signal vector is provided to an adaptive array in order to
regenerate the desired signal x0(l). Since received signal vector Yl is expressed in a complex
number, basically, the output of the adaptive array has both real and imaginary parts. However,



only the real part is used for the following signal processing and performance evaluation, since
the desired signals are only mapped on a real axis when the APSK modulation is applied.

zl = <
[
WHYl

]
(2)

In (2), zl, <[a] W and suffix H represent the real output signal, a real part of a, the weight
vector, and Hermitian transpose of a matrix or vector, respectively.

3 Proposed algorithm

Let Pr(α > β) denote the probability that the variable α is greater than β, BER of the adaptive
array, P , can be defined as follows.

P =

2M−1∑
l=1

P1 (l)Pr

(
|s (l)− b0,1(l)zl| > 2−Md

)
+ P1

(
2M
)
Pr

(
s
(
2M
)
− b0,1(2

M )z2M > 2−Md
)

=
2M−1∑
l=1

P1 (l)

{
Q

(
2−Md− s (l) + b0,1(l)zl

σ |W |

)
+Q

(
2−Md+ s (l)− b0,1(l)zl

σ |W |

)}

+ P1

(
2M
)
Q

(
2−Md− s

(
2M
)
+ b0,1(2

M )z2M

σ |W |

)
(3)

In (3), P1(l), b0,1 (l), σ
2 and s(l) denote the probability that signal x0(l) is transmitted, the

most significant bit of x0(l), half of the variance of the AWGN, and amplitude of x1(l), i.e.,
b0.1(l)x(l), respectively. In addition, Q(u) represents the Gaussian Q-function defined in the
following.

Q (u) =
1√
2π

∫ ∞

u
e−

t2

2 dt (4)

As is described above, our aim is to minimize the BER of the adaptive array output. Therefore,
the optimum weight vector of the proposed algorithm is defined to minimize the BER function
defined in (3). To find the optimum weight vector, the gradient descent method is applied in
our proposed algorithm as is done in the LBER algorithm for BPSK.

Wk = Wk−1 − µ
∂P

∂WH
, (5)

where µ is a stepsize parameter. Basically, it can be approximated that transmission signals
x0(l) l = 1, . . . 2M are transmitted with equal probability. As a result, the weight vector update
of the proposed algorithm can be derived as follows.

Wk = Wk−1 +
µ0√
2πσ



e
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+e
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|Wk−1|3
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e
− |2

−Md−s(l)+b0,1(l)zl|2
2σ2|Wk−1|2

(
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(6)

In (6), µ0 is an actual stepsize defined as µ0 = µ
2M

. As is seen from (6), the weight vector is

updated in the same manner for the transmission signal vectors except for those with x0(2
M ).



4 Performance analysis

Because the nonlinear function is included in the proposed algorithm written in (6), it is quite
difficult to analyze the performance of the adaptive arrays based on the proposed algorithm,
theoretically. However, we try to get some insight of the performance in this section. In principle,
the optimum weight vector Wopt which minimizes the BER is defined as the vector with respect
to which the ensemble average of the partial differential of the BER is the zero vector. In a

word, E

[
∂P

∂WH
opt

]
=0 where Wopt and E[β] denote the optimum weight and ensemble average of

β. Of course, the zero vector multiplied by WH
opt also becomes zero. So, by using the definition

of the BER function in (3), the following equation can be derived.

<

[
WH

optE

[
∂P

∂WH
opt

]]
=

2M−1∑
l=1

E

−e
− |2

−Md−s(l+1)+b0,1(l+1)zl+1|2
2σ2|Wopt|2 +e

− |2
−Md+s(l)−b0,1(l)zl|2

2σ2|Wopt|2

2−Md+s (l)

|Wopt|

=0

(7)

If a channel matrix is given, the optimum weight vector is expected to stay steady. This means

that 2−Md+s(l)
|Wopt| l = 1, . . . , 2M are regarded as constants in the above equation. Hence, the

solutions of the following equations obviously satisfy the equation in (7).

E

e− |−2−Md+s(2M)−b0,1(2M)z2M |2
2σ2|Wopt|2

=E
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In (8), the property of the APSK modulations, s(l)+2
M
d = s(l+1)−2−Md, is used. Obviously,

the equation in (8) is satisfied with zl l = 1, . . . , 2M If b0,1 (l) zl has the probability density
function that is symmetric with respect to s(l). It is obvious that zl with this probability
density function minimizes the BER. Therefore, the proposed algorithm is expected to converge
to the weight vector with which zl has the probability density function. Therefore, the equation
in (8) is satisfied by the proposed algorithm. By using the equation in (8), consequently, the

optimum weight vector of the proposed array can be derived from the equation E

[
∂P

∂WH
opt

]
=0.

Wopt = G−1E

 2M∑
l=1

e
− |2

−Md−s(l)+b0,1(l)zl|2
2σ2|Wopt|2 b0,1 (l)Yl −
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e
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 (9)

G =
1

|Wopt|2
E

 2M∑
l=1

e
− |2

−Md−s(l)+b0,1(l)zl|2
2σ2|Wopt|2 b0,1 (l) zl −
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e
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 (10)

Obviously, (9) and (10) are regarded as simultaneous nonlinear equations. Still, it is not easy
to find the solution of the equations directly. However, since G is a scalar, it is obvious that the
directivity pattern of the array is determined by (9). Though the performance of the adaptive
array is difficult to analyze in the CCI channel, it can be only found that the adaptive array based
on proposed algorithm achieves the performance of the maximum ratio combining (MRC) in
channels without interference, because the Wopt is given by the weighted sum of the correlations
between b0,1 and Yl in (9). In the next section, therefore, the performance in CCI channels is
evaluated by computer simulation.



5 Computer simulation

In the performance evaluation, 2 antennas are applied to the receiver, while 3 signals including
one desired signal are simultaneously received with equal power. Modulation scheme of these
three signals are 4-APSK. Figure 1(a) shows the BER performance with respect to the DOA
of the desired signal when DOAs of the two interference signals are 0 degree and 90 degree.
In the figure, the performance of the least mean square (LMS) adaptive array is also drawn.
Obviously, the proposed array achieves better performance than the LMS array at ±30 degree
of DOA. Figure 1(b) shows the BER performance vs. carrier to noise ratio (CNR) when DOA
of the desired signal is fixed to 30 degree. In addition to the performance of the LMS adaptive
array in the system model, the performance of the LBER adaptive arrays for the quaternary
phase shift keying (QPSK) is added as a reference. Apparently, the proposed adaptive array
attains the best performance in the three arrays.

6 Conclusion

A least bit error rate algorithm for multi-level modulations is proposed in this paper. In addition,
an equation is derived for the optimum weight vector of the proposed algorithm to satisfy.
Computer simulation reveals that the adaptive array based on the proposed algorithm achieves
much better performance than that based on the LMS. In addition, it is also shown that APSK
modulations are more suitable for the least BER algorithm than the QPSK modulation. Anyway,
it can be concluded that the adaptive array based on the proposed algorithm achieve superior
performance even if the number of interference signals is as many as that of the received antennas.
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Figure 1: BER performance of the proposed adaptive array


