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Abstract—We developed the algorithm for obtaining
saddle quasi-periodic solutions and demonstrated them in
a ring of coupled bistable oscillators [1]. This algorithm
worked when a saddle quasi-periodic solution existed in
the basin boundary of two attractors. The reason why
we derived the saddle quasi-periodic solution was that it
was indispensable to elucidate the bifurcation mechanism
of quasi-periodic solutions such as saddle-node, Neimark-
Sackker, and pitchfork, etc.

In this paper, we develop the algorithm for calculating
Lyapunov exponents (LEs) of the saddle quasi-periodic so-
lution. Usually, LEs are calculated for “attractors,” there-
fore the algorithm using variational equation along a stable
flow works well. However, when the flow is unstable as is
the case of saddle quasi-periodic solution, we have to cal-
culate the variational equation by correcting the unstable
flow for every short time span. We demonstrate the calcu-
lation of LEs of pitchfork and saddle-node bifurcations of
saddle quasi-periodic solutions in a ring of several number
of coupled hard-type oscillators.

As an example, we will introduce LEs for the saddle
quasi-periodic solution obtained for the two coupled hard-
type oscillator system shown in Eq. (1).

ẋ0 = x1,
ẋ1 = −ϵ(1 − βx2

0 + x4
0)x1 − (1 − α)x0

+ α(x2 − 2x0 + x2),
ẋ2 = x3,
ẋ3 = −ϵ(1 − βx2

2 + x4
2)x3 − (1 − α)x2

+ α(x0 − 2x2 + x0).

(1)

From Eq. (1) we can obtain SICC (a stable (nodal) quasi-
periodic solution) and UICC1 (an unstable (saddle) quasi-
periodic solution) as shown in Fig. 1 [2]. To obtain UICC1
we use the algorithm to calculate a saddle quasi-periodic
orbit shown in NOLTA2012 [1]. Fig. 2 shows the variation
of Lyapunov exponents for UICC1 and SICC in terms of
β. The upper trace of Fig. 2 shows the variation of three
LEs of UICC1 in descending order. They show one posi-
tive, two almost zero LEs which are one of the evidences
of saddle quasi-periodic solution. The lower trace of Fig. 2
shows that of three LEs in the same order. They show two
almost zero and one negative LEs which are one of the evi-
dences of stable (nodal) quasi-periodic solution. From this

diagram we notice that a saddle-node bifurcation occurs
clearly at β = β*=3.909.

For calculating LEs of SICC, we can use ordinary algo-
rithm. In contrast, for calculating LEs of UICC, we must
use our developed new algorithm. The algorithm is pre-
sented by flowchart shown in Fig. 3 [3]. In Fig. 3 an op-
erator a′ =Solve(ta, tb; a) is defined such that numerically
solving Eq. (1) with initial condition a at t = ta gives a new
value a′ at t = tb. Therefore, the operator Solve(t, t + T ; at)
gives the numerically calculated value at+T at t = t + T
where T is chosen as T = 0.1 sec. Then, by using the ob-
tained saddle solution as a core orbit, we can calculate LEs
for the saddle quasi-periodic solution.
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Figure 1: Saddle-node bifurcation of the quasi-periodic at-
tractor for α = 0.495 and ϵ = 0.1: the “SICC” (red) incor-
porates with the “UICC1” (blue) and disappears as β is in-
creased. (a) Before the SN bifurcation for β = 3.898 (b) At
the SN bifurcation for β = β∗ = 3.909 (c) After the SN bi-
furcation for β = 3.910. The green colored closed curve as-
sociates with the “UICC2” and violet colored closed curve
associates with the “UICC3,” which are out of concern so
far.
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Figure 2: The variation of Lyapunov exponents shown in
descending order for α = 0.495 and ϵ = 0.1. The smallest
LE around -0.35 is omitted. β* presents the saddle-node
bifurcation point.
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Figure 3: Flowchart for tracing a saddle quasi-periodic so-
lution via the bisection algorithm.
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