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 Abstract–Experiments demonstrate an improved 
approach to ranging and detection by exploiting a 
solvable chaotic oscillator. This nonlinear oscillator 
includes an ordinary differential equation and a discrete 
switching state. The oscillator admits an exact analytic 
solution as the linear convolution of a symbolic dynamics 
and a basis function, which enables coherent reception 
using a simple analog matched filter. An acoustic ranging 
system is demonstrated that uses just simple analog and 
digital electronic circuit components. 
 
1. Introduction 
 
 The wide bandwidth and aperiodic properties of chaos 
naturally suggest benefits for high-resolution, 
unambiguous ranging in radar, sonar, and ladar systems 
[1-13]. An obvious, conventional approach might be to 
substitute chaos for the noise source in random-signal 
radar. In such a system, a segment of the transmitted 
waveform is sampled and stored, using a resolution 
defined by the signal bandwidth and the Nyquist sampling 
criterion. The stored signal is then used in a correlation 
receiver to detect a return signal and determine time of 
flight. The cross-correlations are usually done digitally, 
using a digital signal processor (DSP) and fast-Fourier 
transforms (FFT). In this approach, the distinguishing 
properties of a chaotic waveform are not used: chaos is 
simply a wide-bandwidth, random source.  
 In contrast, we recently developed an alternative 
approach to detection and ranging that truly exploits the 
properties of a chaotic waveform to alleviate the most 
expensive parts of random-signal radar—i.e., sampling, 
digital memory, and digital signal processor—while still 
maintaining the performance of a correlation receiver [13]. 
This new approach uses chaotic waveforms generated by 
an analytically solvable nonlinear oscillator comprising an 
ordinary differential equation and a discrete switching 
state [14-15]. This hybrid oscillator admits an exact 
solution, which can be written as the linear convolution of 
a symbolic dynamics and a basis function. This analytic 
representation is significant since it enables coherent 
reception using a simple analog matched filter and only a 
few stored symbols. 
 In this paper, we present recent acoustic experiments 
that demonstrate this approach to ranging and detection. 
For these experiments, an amplified speaker emits an 

audio-frequency waveform generated by an electronic 
realization of the hybrid oscillator. The transmitted 
waveform sounds like noise. A complementary receiver 
circuit incorporates a matched filter for the chaotic 
waveform, which is mathematically equivalent to a 
correlation receiver. At repeated intervals, a sequence of 
symbols detected in the symbolic dynamics of the emitted 
waveform is captured, thereby defining a transmitted 
signal for ranging. The captured symbol sequence is 
provided to the receiver, where it defines the matched 
filter for the transmitted signal. Practically, the symbols 
define weights applied to elements of a microphone array, 
the outputs of which are summed and passively filtered. 
The output of the matched filter is a continuous signal that 
is proportional to the cross-correlation of the transmitted 
and received signal. In operation, a consistent peak in the 
output of the matched filter is observed, which indicates a 
detected target. Ranging is derived by the time of flight 
for the consistent peak. 
 The entire experimental system is realized using simple 
analog and digital electronic circuit components. 
Importantly, the receiver does not require waveform 
sampling or digital signal processing for detection. Real-
time measurements using only an oscilloscope provide 
visible evidence of detection and ranging with the system. 
 
2. Hybrid Chaotic Oscillator 
 
 The central element of the ranging demonstration 
system is the audio frequency oscillator shown 
schematically in Fig. 1. This electronic oscillator is a 
physical realization of a chaotic system previously 
considered by Tsubone and Saito [14] and Corron et al. 
[15]. This oscillator is a hybrid system, containing both an 
analog harmonic oscillator and digital logic circuits. 
 The dynamics of the oscillator are equivalent to a 
dimensionless hybrid model including a continuous scalar 
state v(t) and a discrete state s(t). The continuous-time 
dynamics are described by the differential equation 
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where ω = 2π and 0 < β ≤ ln 2. Transitions in the discrete 
state are defined by the guard condition 
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FIG. 1. Exactly solvable chaotic oscillator. 
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meaning vs(t) is set to the sign of v(t) whenever its time 
derivative vanishes, and vs(t) maintains this value until the 
next critical point. 
 This oscillator admits an exact, analytic solution 
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where each sm = ±1 and P(t) and R(t) are fixed basis 
functions. In the solution, each symbol sm modulates the 
fixed basis functions P(t) and R(t) centered at time t = m. 
Thus, it is correct to think of the symbol sm as the 
information emitted by the oscillator at time t = m, and 
that the oscillator emits one symbol with each unit of time. 
The fixed basis functions are 
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which are shown in Fig. 2 for β = ln 2. 
 For the acoustic system, we implemented the oscillator 
in an electronic circuit operating at roughly 10 kHz. The 
circuit is contructed using discrete analog and digital 
components on a solderless breadboard. 
 
3. Transmitter 
 
 The existence of fixed basis functions can be exploited 
for efficiently sampling the transmitted signal and storing 
a reference waveform. Here we show a transmitter design 
that achieves this important functionality. 
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FIG. 2. Analytic basis functions P(t) (black) and R(t) 

(gray) for the oscillator model with β = ln 2. 
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FIG. 3. Acoustic transmitter incorporating the exactly 

solvable chaotic oscillator. 
 
 
 The complete transmitter is shown in Fig. 3. At the 
center of the transmitter is the chaotic oscillator. The 
transmitted signal is the continuous state of the free-
running chaotic oscillator, which is amplified and emitted 
by a conventional speaker. The additional circuitry at the 
bottom of the transmitter schematic derives a clock signal 
from the regular return times of the oscillator. The clock 
signal drives a binary shift register, which uses the signal 
s(t) for the data input. A divide-by-N counter circuit 
provides a signal to alternately enable and disable the 
shift register. For our experimental system, we typically 
use the value N = 1024.  
 In operation, the free-running oscillator generates a 
chaotic waveform that is continuously emitted from the 
speaker. While the shift register is enabled, the symbolic 
logic state s(t) is sampled for each return and stored in the 
shift register. At any time, a fixed number of the most 
recent values of the logic state s(t) are stored, which 
correspond to a sequence of amplitudes sm generated by 
the free-running oscillator. Although the figure only 
shows an eight-bit shift register, for the acoustic system 
we used a twelve-bit register. 
 After shifting N successive returns through the register, 
the shift register is disabled by the signal from the divide-
by-N circuit. When disabled, the contents of the shift 
register are locked, thereby storing symbols that identify 
the signal transmitted just prior to the disabling transition. 
These stored symbols effectively define a reference 
waveform to use for detection and ranging in a correlation 
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receiver. Compared to the usual Nyquist sampling criteria, 
this symbolic representation provides at an order of 
magnitude reduction in the sampling and storage 
requirements for the reference waveform. 
 A simulated waveform and shift register content is 
shown in Fig. 4. The top plot shows the oscillator 
waveforms v(t) and vs(t). The continuous waveform v(t) is 
the transmitted waveform emitted by the speaker. The 
middle plot shows the clock signal that is extracted from 
the oscillator waveforms and defines the symbol timing. 
The bottom waveform shows the trigger signal derived by 
the divide-by-N operation from the clock signal. The shift 
register is disabled by the low-to-high transition of the 
trigger signal. The dots in the top plot show the most 
recent eight symbols captured and stored by the shift 
register when it is disabled by the trigger. These symbols 
define a reference waveform for the correlation receiver. 
 
4. Correlation Receiver 
 
 The second advantage in using an exactly solvable 
chaotic oscillator is the availability of a simple matched 
filter for the basis function [16]. This filter enables the 
construction of a simple correlation receiver for a chaotic 
waveform segment defined by truncated symbol sequence 
[13]. For the acoustic system, we implement a receiver 
using discrete circuit components and without 
requirement for a DSP. 
 The matched filter for a solvable chaotic waveform is 
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where v  is the received signal, η is an intermediate state, 
and ξ is the output of the matched filter [13]. The finite 
symbol sequence sm for 1 , ,0m N= −   defines the 
reference waveform for the filter. The function of the 
matched filter is mathematically equivalent to a 
correlation with the reference waveform. For a signal 
corrupted by additive white Gaussian noise (AWGN), the 
matched filter is the optimal linear receiver for detecting 
the signal [17]. 
 Fig. 5 shows a schematic implementation of the 
matched filter for the acoustic ranging system. The 
received waveform impinges on a microphone array, 
shown at top. The spacing of the microphones in the array 
is chosen to realize the evenly spaced time delays in the 
first equation of the matched filter. Differential amplifiers 
between adjacent microphones provide the difference 
signal of successively lagged signals, which are 
multiplied by ±1 according to the symbols defining the 
reference waveform. The summed differences are 
integrated and drive the harmonic filter to generate the 
matched filter output. 
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FIG.. 4. Typical transmitter waveforms, including the 
derived clock and trigger signals. Dots shown on the 
switching waveform indicate the most recent eight 
symbols stored in the shift register when disabled. 
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FIG. 5. Acoustic correlation receiver that realizes a 

matched filter for the solvable oscillator. 
 
5. Ranging System 
 
 The transmitter and receiver were constructed and 
installed in an acoustically anechoic chamber for 
demonstration and test. The speaker was positioned at 
different ranges in front of the microphone array, as 
shown in Fig. 6. A handheld oscilloscope, triggered on the 
disable signal to the shift register, was used to monitor the 
receiver output. The transmitter and matched filter states 
were also connected to a computer for instrumentation 
and tuning purposes. 
 In operation, a consistent spike in the matched filter 
output was evident at a delay corresponding to the 
distance from speaker to microphone array. In a single 
return for one instance of the reference waveform, this 
peak may be indistinguishable from background noise, 
intersymbol interference, or waveform sidelobes. 
However, the consistent peak emerges when multiple 
receiver outputs are averaged, which was conveniently 
provided by the oscilloscope. Typical outputs for 64 
averaged returns are shown in Fig. 7, which shows the 
detection and correctly estimated range at three speaker 
positions. 
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FIG. 6. Acoustic ranging system using solvable chaos 
installed in an anechoic test chamber. 
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FIG. 7. Receiver output for 64 averaged returns at three 

speaker positions. 
 
6. Conclusions 
 
 We successfully demonstrated acoustic ranging using a 
simple and inexpensive experimental system by 
exploiting the properties of exactly solvable chaos. 
Notably, correlation receiver capability is achieved using 
analog hardware, and significant pulse compression is 
obtained without the sampling and storage requirements 
of a comparable random signal waveform. This successful 
demonstration enables the development of new, low-cost 
sonar and radar technologies using chaotic waveforms. 
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