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Abstract—In this paper, we discuss some phenomena
of obstacle clustering by distributed autonomous robots, in
the light of space-discretization (or cellular automata) ap-
proach. This work was motivated by Swiss Robots, which
collect scattered obstacles into some clusters without any
global information nor intelligent concentrated controller.
Then we define fundamental event rules in this cellular
world, and introduce two types of local rules for robot ac-
tion: one is the Push & Turn rule, which can collect obsta-
cles, the other is Pull & Turn rule, which can scatter obsta-
cles. By defining a indix (ratio of immobile obstacles), we
investigate the dynamic equilibrium of obstacle clustering
by heterogeneous agents.

1. Introduction

It’s always seemed like a big mystery: how nature, seem-
ingly so effortlessly, manages to produce so much that
seems to us so complex even if individual element or agent
is very simple. For example, living things like ants or bees,
which have very tiny brains and memories, often construct
very big complicated nest [1][2]. In the field of robotics,
Deneubourg proposed the robots which can only perceive
objects just in front of them and carry them from a simple
local rule, but can distinguish between objects of two or
more types [3]. On the other hand, utilizing the morphol-
ogy of the body, Pfeifer proposed Swiss Robots, which can
collect obstacles into some clusters without any global in-
formation nor intelligent concentrated controller [4][5].

In this research, we have focused on the pattern genera-
tions generated by static agents and mobile agents. Then,
we propose to assume that everything happens on a dis-
cretized state space (hexagonal cellular space). This cellu-
lar automata approach was proposed to investigate complex
systems (e.g. self-organization) [6][7].

Then we define fundamental event rules in this cellular
world, and introduce two types of local rules for robot ac-
tion: one is the Push & Turn rule which collects scattered
obstacles into some clusters, and the other is Pull & Turn
rule which scatters collected obstacles. In this paper, we
take closer look at clustering behaviors in heterogeneous
system with two different types of robots.

This paper is organized as follows. Section 2 prepares

Figure 1: Coordinate settings in the hexagonal cellular
space.

basic properties hold on hexagonal cellular space, and in-
troduces two types of local rules for robot action. Section 3
makes basic simulations of each robot, and introduces a
evaluation index. Section 4 analyzes the dynamic equilib-
rium in heterogeneous system.

2. Rules of the discrete world

In this section, we consider a discrete version of the pat-
tern generation. We first propose to assume that everything
happens on a discretized state space. Then we define fun-
damental event rules in this cellular world, and introduce
two types of local rules for robot action: one is the Push
& Turn rule which collects scattered obstacles into some
clusters, and the other is Pull & Turn rule which scatters
clustered obstacles.

2.1. Spatial discretization

Suppose a tessellation of the 2-dimensional Euclidean
space R2 with unit equilateral hexagons, as shown in Fig-
ure 1. In order to deal with limited size of the field, we have
to impose some assumption on boundary. In this paper, we
suppose that the field has Torus-like topology; namely, the
right edge of the field is identified with the left one, and the
top one is identified with the bottom one (See Figure 2).
Thus the coordinate space Z is replaced by Z2

N if the field
contains N by N cells.
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Figure 2: Periodic boundaray condition

(a) A robot (b) An obstacle

Figure 3: Objects

2.2. Fundamental rules

The world in concern consists of the hexagonal cellular
space, robots and obstacles. A robot occupies a cell (Fig-
ure 3(a)), and has its own state in Z2

N ×Z6. An obstacle also
occupies a cell (Figure 3(b)). An obstacle does not have its
orientation, so its state is in Z2

N . Multiple agents can never
occupy a single cell; i.e., each cell is empty, or contains ei-
ther a robot or an obstacle. State of the world is collection
of states of all the robots and obstacles.

State of the world changes stepwise. Every robot
changes its state either of the action rules defined later. Ev-
ery obstacle, which is immobile in itself, can be pushed or
pulled by robots.

Now we propose the following rules for robot action.
Push & Turn robots decide their movements from the infor-
mation of two cells in front of the robot. Pull & Turn robots
decides their movements from the information of two cells
in front of the robot, and the back of the robot.

Rule 1 (Push & Turn rule)

• If the front cell is empty or exists one obstacle: step
forward to the front cell (Figure 4(a)).

• Otherwise: turn randomly to the right or left. (Fig-
ure 4(b)). •

Rule 2 (Pull & Turn rule)

• If the front cell is empty: step forward to the front
cell.

• Else if the front cell exists obstacle and back cell
is empty: step backward to the back cell pulling one
obstacle (Figure 5(a)).

• Otherwise: turn randomly to the right or left. (Fig-
ure 5(b)). •

(a) Push (Move forward) (b) Turn (Turn Right or left)

Figure 4: Push & Turn robot on hexagonal cellular space.

(a) Pull (Move backward) (b) Turn (Turn Right or left)

Figure 5: Pull & Turn robot on hexagonal cellular space.

3. Basic Simulations

First, we carry out some basic simulations by each robot.
Then we introduce an index to evaluate them.

3.1. Basic results: comparison between two rules
3.1.1. Push & Turn robots

In this case, suppose the field of 20×20 cells; 20 Push &
Turn robots and 40 obstacles are distributed with random
initial configurations. These robots movements eventually
lead to obstacle clustering phenomena. Figure 6 shows
some snapshots taken from a simulation result. First, the
obstacles form small “core” clusters by about 500 steps.
Then the cores tend to grow as the robots bring free obsta-
cles. Some clusters are demolished into smaller fractions;
some grow large enough so that they are “unbreakable” any
more, and eventually absorb smaller fractions brought in by
the robots. Most of the obstacles are formed into a single
connected cluster by about 2000 steps (remember that the
field has torus-like topology).

3.1.2. Pull & Turn robots

In this case, suppose the field of 20×20 cells; 20 Push &
Turn robots and 40 obstacles are distributed with clustered
initial configurations. These robots movements eventually
lead to scatter obstacles. Figure 7 shows some snapshots
of simulations. The clustered obstacles are scattered ran-
domly by about 300 steps.

3.2. Indices for analysis

Let us begin with preparing an index for quantitative ob-
servation.

Definition 1 (Ratio of immobile obstacles) Let k ∈ N be
index for obstacles. Degree of mobility of the k-th obsta-
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Figure 6: The 40 obstacles (blue objects) clustering sim-
ulation by Push & Turn robots (20 red robots) in spatial
discretized system.

cle, say Mk ∈ {1, 2, 3, 4, 5, 6}, is defined as the number of
directions to that the obstacle can be pushed by a push &
turn robot.

Let C ⊆ N be a subset of obstacle indices. The sum of
degrees of mobility of obstacles in the subset, i.e.,

MC =
∑
k∈C

Mk.

is called the degree of mobility of the subset C. If C is
the set of all obstacles, then MC is simply denoted as M to
imply the whole system’s degree of mobility.

The ratio of immobile obstacles IM is a set of obstacles
whose degree of mobility Mk counts 0 for all obstacles.

See Figure 8 for examples. When an obstacle (k = 1)
can be moved to every direction (Figure 8(a)) the ratio
of immobile obstacles IM counts 0. When two obstacles
k ∈ C = {1, 2} are located next to each other (Figure 8(b)),
IM also counts 0. When an obstacle is surrounded by six
obstacles (Figure 8(c)), then IM counts 1.

4. Obstacle clustering by heterogeneous agents

This section describes the obstacle clustering by het-
erogeneous agents (Push & Turn robots and Pull & Turn
robots).

4.1. Simulation: influence of the density of heteroge-
neous robots

Now let us turn to discuss the obstacle clustering at the
difference of the density of Push & Turn robots to Pull &

0 step 

② 

③ 

④ 

① 

50 step 

100 step 

300 step 

Figure 7: The 40 obstacles (blue objects) scattering sim-
ulation by Push & Turn robots (20 red robots) in spatial
discretized system.

(a) IM = 0/1 = 0 (b) IM = 0/2 = 0 (c) IM = 7/7 = 1

Figure 8: Examples: calculating the ratio of immobile ob-
stacles.

Turn robots. The size of the field is fixed to 100 × 100 =
10000 (N = 100). And the number of the obstacles is also
fixed at 500 (5% of the field). The sum of Push & Turn
robots and Pull & Turn robots are fixed at 1000. We ex-
amined by changing the density of the Pull & Turn robots
from 1% to 10%.

Figure 9 shows the snapshots of the simulations at
100000 steps when the density of the Pull & Turn robots is
1, 2, 5%. And the changes of the ratio of immobile obsta-
cles IM are shown in Figure 10. The histograms of the ratio
of immobile obstacles IM from 90000 steps to 100000 steps
are shown in Figure 11. Figure 11 indicates that the ratio of
immobile obstacles IM is at the dynamic equilibrium within
some ranges. From Figure 9 and Figure 10, it seems that
the ratio of immobile obstacles IM gets smaller as the den-
sity of the Pull & Turn robots increases, and higher density
of them leads to non-clustering of obstacles.

4.2. Numerical Analysis

The relationship between the ratio of immobile obstacles
IM and the density of the Pull & Turn robots is shown in
Figure 12. Then, suppose the density of Pull & Turn robots
as a independent valuable x, and the ratio of immobile ob-
stacles IM as a estimated variable y. And the relationship,
fitted to a set of data, is characterized by a prediction equa-
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(a) 1% (b) 2% (c) 5%

Figure 9: The obstacle clustering at the different density of
heterogeneous agents.
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Figure 10: The changes of the ratio of immobile obstacles
at the different density of heterogeneous agents.

tion.

y = −13.2x + 102,
r2 = 0.917.

From the above equations, it will be concluded that the ratio
of immobile obstacles IM can be controlled by feeding an
input of the ratio of Push & Turn robots to Pull & Turn
robots to the system.

5. Conclusion and future works

In this paper, we proposed a discrete-space version of ob-
stacle clustering by distributed autonomous robots. From
the quantitative analysis of obstacle clustering by heteroge-
neous robots (Push & Turn robots and Pull & Turn robots),
it will be concluded that the ratio of immobile obstacles IM

can be controlled by feeding an input of the ratio of Push
& Turn robots to Pull & Turn robots to the system.
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(a) 1% (average = 0.88)
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(b) 2% (average = 0.74)

0 20 40 60 80 100
0

10

20

30

40

50

immobile obstacles [%]

Fr
eq

ue
nc

y 
[%

]

(c) 5% (average = 0.46)

0 20 40 60 80 100
0

10

20

30

40

50

immobile obstacles [%]

Fr
eq

ue
nc

y 
[%

]

(d) 10% (average = 0.024)

Figure 11: The histograms of the ratio of immobile obsta-
cles at the different density of heterogeneous agents.
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Figure 12: Density of the Pull & Turn robots v.s Ratio of
immobile obstacles.
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