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Abstract—We numerically study the synchronization of
two semiconductor lasers, which have optical self-feedback
loops and are subject to injection of common driving light
with fast and randomly fluctuating phase and amplitude.
We show that the synchronization is possible for broad-
band random light injection, and clarify the properties of
this type of synchronization in detail.

1. Introduction

A variety of physical systems exhibit oscillatory dynam-
ics. Such systems are as diverse as electrical circuits, chem-
ical reaction systems, and neuronal networks. It is well
known that these systems can exhibit various types of syn-
chronization phenomena [1, 2]. Lasers are typical such os-
cillatory systems and exhibit various synchronization phe-
nomena via electrical or optical signals [3, 4].
Recently, it has been revealed that a common random

input could give rise to synchronization between two in-
dependent limit-cycle or chaotic systems [5, 6, 7, 8, 9, 10,
11, 12]. This type of synchronization has been experimen-
tally observed in semiconductor lasers driven by common
light, in which both the amplitude and phase fluctuate ran-
domly [13, 14] or only the phase fluctuates randomly with
constant amplitude [15].
The synchronization of lasers has potential applications

to secure communications, and many studies have been
made for this issue (e.g., [3, 4]). Recently, we have pro-
posed a secure key distribution scheme using correlated
randomness in lasers synchronized by injection of common
random light with broad bandwidth, which has a fast ran-
domly fluctuating phase or amplitude [16]. The security
of this scheme relies on the difficulty of completely ob-
serving the broadband common random light with current
technology. Such approach using the limits of observation
technology is called bounded observability approach [17].
In order to achieve higher security in the above scheme, it
is necessary to use a common random light with broader
bandwidth, which is more difficult to completely observe.
In the experiments in Refs. [13, 14, 15], the bandwidth
of common random light was of the order of a few GHz,
which is not broad enough. It is an important issue to clar-
ify the nature of synchronization phenomenon in broader
bandwidth regime beyond the regime of a few GHz.

Figure 1: Illustration of the laser system configuration.

In this paper, we consider two semiconductor lasers with
optical feedback loops and subject to injection of common
random light with much broader bandwidth up to the order
of THz. We numerically investigate the condition for their
synchronization in detail, focusing on its dependence on
the parameters which characterize the lasers or the random
light.

2. Model and simulation method

Figure 1 illustrates the configuration of laser system of
our study. A portion of light from a random light source
(RLS) is injected into two semiconductor lasers, which we
call response lasers (RL1, 2). The light has randomly fluc-
tuating phase and amplitude. In experiments, the RLS can
be realized by using a super luminescent diode. This opti-
cal coupling is unidirectional from the RLS to the response
lasers. Each response laser has an external mirror (M) to
form an optical self-feedback loop. The loop includes a
phase modulator (PM) to vary the phase θ1,2 of the feed-
back light.
To model the system in Fig. 1, we use the Lang-

Kobayashi equation with optical injection [18]:

dEj

dt
=

{
−iΔωj +

1 + iα

2
GN (Nj − Nth)

}
Ej

+
κr

τin
Ej(t − τ) exp[iθj ] +

κinj

τin
Einj(t), (1)

dNj

dt
= J − 1

τs
Nj − GN (Nj − N0) |Ej |2, (2)

where j = 1, 2 indicate the response laser 1 and 2, re-
spectively, Ej represents the complex electric field, Nj the
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carrier number density, κr the optical feedback strength,
τ the external-cavity delay time, Einj the complex electric
field of the injected common random light, and κinj the in-
jection strength. The detuning parameter Δωj is defined
by Δωj = ω0 − ωj , where ω0 is the center optical angu-
lar frequency of the injected light and ωj is that of the jth
response laser. For later use, we define the detuning fre-
quencyΔf = Δω1/2π.
Let ρ(t) and φ(t) be fluctuations in the amplitude and

phase of the injected lightEinj defined byEinj(t) = E0|1+
ερ(t)| exp[iφ(t)], respectively, where E0 and ε are positive
constants. We assume ρ(t) and φ(t) are described by the
stochastic differential equations

dρ

dt
= −ρ/τm +

√
2/τm ξ(t) (3)

and
dφ

dt
=

√
2/τm η(t), (4)

where τm is a positive constant. In Eqs. (3) and (4), ξ(t)
and η(t) are the normalized white Gaussian noise with
the properties 〈ξ(t)〉 = 〈η(t)〉 = 0, 〈ξ(t)η(s)〉 = 0,
and 〈ξ(t)ξ(s)〉 = 〈η(t)η(s)〉 = δ(t − s), where 〈·〉 de-
notes the ensemble average and δ is Dirac’s delta func-
tion. The amplitude ρ(t) is the Ornstein-Uhlenbeck pro-
cess, and it has the properties 〈ρ(t)〉 = 0 and 〈ρ(t)ρ(s)〉 =
exp[−|t − s|/τm]. This indicates that the correlation time
of ρ(t) is given by τm. On the other hand, φ(t) has the
property 〈[φ(t) − φ(s)]2〉 = 2τ−1

m |t − s|. Since φ(t) has
the diffusion constant τ−1

m , its characteristic time for cor-
relation decay can be defined by τm. Therefore, τm gives
the time scale of fluctuation of Einj. This implies that the
bandwidth of Einj is of the order of τ−1

m .
In our numerical simulations, the following parameter

values were used: α = 3, GN = 8.4×10−13 m3s−1, N0 =
1.4 × 1024 m−3, Nth = 2.018 × 1024 m−3, τin =
8.0 ps, τs = 2.04 ns, τ = 4.0 ns, and J = 1.19 Jth, where
Jth = Nth/τs is the lasing threshold of injection current.
For this value of J , the response lasers have the relax-
ation oscillation frequency 2.0 GHz. We assumed a slight
detuning between the two response lasers as ω1 − ω2 =
0.2 GHz. As for the injected light, we set ε = 0.3 and
E0 = [0.19Jth/GN (Nth − N0)]1/2. The other parameters
κinj, κr,Δf , and τm were varied in the simulations.
We are specifically interested in the condition for syn-

chronization of the response lasers, especially its depen-
dence on the parameters which characterize the lasers or
the injected light. In order to measure the synchronization,
we use the correlation between the output intensities of the
two response lasers, Ij(t) = |Ej(t)|2. The correlation be-
tween I1(t) and I2(t) is defined as

C =
〈(I1 − μ1)(I2 − μ2)〉T

σ1σ2
, (5)

where μj and σj are the average and the standard deviation
of Ij , respectively, and 〈·〉T denotes the time average. By

Figure 2: Contour plot of correlation C in (Δf, κinj) plane
for response lasers with κr = 0.2, where τm = 10ps.

Figure 3: Temporal waveform and correlation plot of out-
puts of response lasers with κr = 0.2, where τm = 10ps.
Parameters are κinj = 0.5 and (a), (b)Δf = −50GHz and
(c), (d) Δf = −10GHz.

definition, C is in the range −1 ≤ C ≤ 1, and it takes
the maximum C = 1 when the identical synchronization,
i.e., I1(t) = I2(t) is achieved. We numerically integrate
Eqs. (1) and (2) to evaluate C.

3. Numerical results

We show an example of the parameter region for syn-
chronization. It was found that the phase shifts θ1 and θ2

of feedback light are important parameters, which signifi-
cantly affect the degree of synchronization. They were set
as θ1 − θ2 = 2π(ω1 − ω2)τ to maximize C. We will use
θ1 and θ2 satisfying this relation in what follows. Figure
2 shows contour plot of C as a function of (Δf, κinj) for
κr = 0.2 and τm = 10ps. The injected light has a broad
bandwidth of the order of 100 GHz. The conditionC > 0.8
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Figure 4: Synchronization region with C > 0.8 in
(Δf, κinj) plane for κr = 0 (solid line), 0.1 (dashed
line), 0.2 (dotted line), and 0.3 (dash-dotted line), where
τm = 10ps.

is satisfied inside the wedge-shaped region bounded by red
line. It was observed that C is very close to unity over most
part of this region. This numerical result indicates that syn-
chronization by common random light injection is possible
even when the injected light has a broad bandwidth. In
what follows, we use C > 0.8 as a criterion for the syn-
chronization.
In Figs. 3 (a)-(d), we show temporal waveforms and cor-

relation plots of outputs of the response lasers. Figures
3 (a) and (b) correspond to the case of Δf = −50GHz
and κinj = 0.5, which is outside the synchronization re-
gion in Fig. 2 and has a small correlation. These figures
clearly show that the response lasers do not synchronize
with each other. Figures 3 (c) and (d) correspond to the
case of Δf = −10GHz and κinj = 0.5, which is a set of
values inside the synchronization region. The correlation is
C � 1 and a straight line of I1 = I2 appears in Fig. 3 (d).
This clearly indicates that the synchronization of response
lasers occurs.
We examine the effects of the feedback strength κr. Fig-

ure 4 shows the synchronization regions in (Δf, κinj) plane
for different values of κr, where τm = 10ps. The contour
lines of C = 0.8 are shown for four different values of
κr. For each contour line, the synchronization occurs in
a region above the line. The synchronization region be-
comes smaller as the feedback strength κr increases: it is
necessary to supply stronger injection light to achieve the
synchronization for larger κr.
Figure 5 shows how the synchronization region depends

on the time scale τm of random fluctuations in the injected
light. The regions for C > 0.8 are shown in (Δf, κinj)
plane for different values of τm. The synchronization oc-
curs above each boundary curve. This result shows that
the synchronization is possible over a wide range of τm

Figure 5: Synchronization region with C > 0.8 in
(Δf, κinj) plane for τm = 1ns (red line), 100 ps (green
line), 10 ps (blue line), and 1 ps (blue line), where κr =
0.2.

values, although the minimum value of κinj necessary for
synchronization increases as τm decreases in the regime
τm ≤ 100 ps. The shape of synchronization region changes
depending on τm. A sharp wedge-shaped region appears
when τm is large and the injected light has a relatively nar-
row bandwidth. In contrast, the region does not have a
wedge shape when τm is small and the injected light has
a broad bandwidth: the value of κinj on the boundary curve
is almost independent of Δf for τm = 1ps.
It is known that the optical frequencies of two synchro-

nized lasers coincide with that of the injected common light
due to the injection locking when the injected light has a
relatively narrow bandwidth [13, 14, 15]. We calculated
the frequency Ωj of each laser to examine whether the fre-
quency locking in the synchronized state still occurs for the
injection light with a broad bandwidth. We define the fre-
quency Ωj as

Ωj = lim
T→∞

1
2πT

[arg Ej(T ) − arg Ej(0)] . (6)

Figure 6 shows Ω1 plotted as a function ofΔf for different
values of τm, where the injection and feedback strengths
are fixed as κr = 0.2 and κinj = 1.2. The results for
Ω2 are similar to those of Ω1. It is clear that Ω1 � 0
holds in a vicinity of Δf = 0 for large τm, namely,
τm = 1 ns and 100 ps. This indicates the frequency lock-
ing between the optical frequency of a laser and that of the
injected light. It turns out from Figs. 5 and 6 that Ω1 � 0
holds roughly over a range in Δf where the synchroniza-
tion occurs, for these two τm values. This observation
clearly confirms that the synchronization is accompanied
with the frequency locking in the case of large τm. In con-
trast, for small τm cases, i.e., broad bandwidth cases, there
is no plateau where Ω1 � 0 holds in Fig. 6. Especially for
τm = 1ps, Ω1 depends on Δf almost linearly. This fact

- 451 -



Figure 6: Frequency Ω1 of electric field E1 vs. Δf for
τm = 1ns (red line), 100 ps (yellow line), 10 ps (green
line), and 1 ps (blue line), where κr = 0.2 and κinj = 1.2.

indicates the lack of frequency locking even in the synchro-
nized state in the case of small τm. The same phenomenon
has been theoretically revealed for two detuned limit-cycle
oscillators driven by common white Gaussian noise [10].
Thus, synchronization without frequency locking may be
regarded as a characteristic of the case of common random
signal driving with broad bandwidth.

4. Conclusions

We numerically studied the synchronization of two semi-
conductor lasers with optical self-feedback loops, which is
induced by common injection of random light with broad
bandwidth. We have clarified the parameter conditions for
the synchronization in detail. The synchronization is pos-
sible over a wide range of bandwidth of the injection light,
i.e., for τm = 1 ns to 1 ps. It has been found that a common
random light with fairly broad bandwidth τm = 1 ps can in-
duce the synchronization. The minimum value of κinj for
synchronization strongly depends on Δf when the band-
width is relatively narrow, while it is almost independent of
Δf when the bandwidth is broad enough. It was found that
the synchronization is accompanied with frequency lock-
ing in the narrow bandwidth regime, while it is without
frequency locking in the broad bandwidth regime. In ad-
dition, we studied the effects of the feedback strength κr

on synchronization and showed that the stronger injection
strength is necessary for the larger κr.
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