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Abstract—Developed in the context of information the-
ory, computational mechanics (CM) has been formulated
to construct the minimal but the most predictive hidden
Markov model, originally termedǫ-machine, which is able
to reproduce the causal structures statistically from time
series. Here I will present several generalizations of CM
to the study of complex dynamics and kinetics of single
molecule (SM) time series. These include the incorporation
of wavelet decomposition into CM to construct the multi-
scale state-space networks for non-stationary SM time se-
ries, and the introduction of soft (or lossy) clustering in
defining states when noise and measurement error present
in the data.

1. Introduction

Single molecule (SM) experiments provide us with
unique information on the distribution of molecular prop-
erties and their dynamic behaviors, which are inaccessi-
ble from ensemble-averaged measurements. In general, the
complexity observed in the dynamics and kinetics of a pro-
tein originates in the underlying multidimensional energy
landscape. The dynamics can be understood as the protein
traversing from one state (node) to another along a com-
plex network in the state space. The network properties
of biological systems can therefore offer us new perspec-
tives to address the nature of hierarchical organizations in
the multidimensional state space and its implications in the
SM complex kinetics. Here we address how computational
mechanics (CM) [1] extracts the state space network (SSN)
of biological systems explicitly from a SM time series,
free from a priori assumptions on the underlying physical
model. Moreover, we discuss several generalizations of the
scheme to handle possible complications one may face in
handling real SM time series, such as nonstationarity and
the presence of measurement errors.

2. Computational Mechanics: Construction of State-
Space Network

We briefly describe how the original CM defines states
and constructs connections among them from scalar time
series. For a given time seriesx = (x(t1), x(t2), · · · , x(tN))
of a physical observablex with continuous values (e.g.
the interdye distance reported by fluorescent probes), we
first discretize it to obtain the symbolic sequences =

(s(t1), s(t2), · · · , s(tN)) with s(ti) denoting the symbolized
observable at timeti. Since CM requires a statistical sam-
pling of subsequences in the symbolic time seriess, the
choice of discretization scheme depends not only on the
experimental resolution but also on the statistical proper-
ties of the time series. A reasonable discretization is such
that the topological properties of the constructed network
are insensitive to the increase in the number of symbols.

The next step in the construction is to trace alongs
for each time stepti to record which subsequence of
length L f uture, s f uture

A = {s(ti+1), · · · , s(ti+L f uture)}, follows
consecutively after a subsequence of lengthLpast, spast

B =

{s(ti−Lpast+1), · · · , s(ti)} (A, B, · · · represent different sym-
bolic subsequences that appear ins). The transition prob-
ability from spast

B to s f uture
A , denoted byP(A|B), is then ob-

tained for the time seriess. In CM, a “state” (denoted by
S i hereinafter) is defined by the set of past subsequences
{spast

B′ , s
past
B” , · · ·} with length Lpast whose transition to the

future subsequences f uture
A takes place with the (nearly)

same transition probabilities (i.e.,P(A|B′) � P(A|B”) �
P(A|B′′′) � · · · for all A). A transition from a stateS i to
anotherS j is constructed with its weight equal to the tran-
sition probabilityP(s f uture

A |S i) if the subsequences f uture
A is

generated from a transition fromS i to S j along the time
seriess. The extraction of all states and transitions among
them yields a SSN associated with the time seriess.

Without the needs to postulate the number of states and
the connectivity of the network, a unique characteristic of
the CM is that it extracts the underlying SSN directly from
time series with lengthLpast chosen such that the topolog-
ical feature of the SSN converges asLpast increases from
zero. It has been proven mathematically [2] that the con-
verged SSN makes all transitions among the states Marko-
vian, i.e., the next state to visit depends only on the current
states. Moreover, the converged SSN is a hidden Markov
model with minimal complexity and maximum predictive
power which can best reproduce the statistics of the time
seriess. The states in the SSN are defined by not simply
the value ofs(t) at each instantaneous time but a subse-
quence of symbols (s(ti), s(ti−1), s(ti−2), · · ·) when memory
exists in the process. Therefore, the CM provides a natural
means to lift “degeneracy” (different physical states hav-
ing the same value in the measured observable) within the
limited information of scalar time series.
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3. Construction of Multi-timescale SSN using Wavelet
Decomposition for SM Nonstationary Time Series

Despite the above attractive features of CM, a difficulty
in the original formulation of CM arises when the length
of the past sequencesLpast increases. In particular, the
number of possible past sequencesspast

B grows exponen-
tially with Lpast and the statistical accuracy in sampling of
spast

B becomes rapidly worse due in real applications. As
a result, with the original procedure it may be too hard to
properly capture long-time memory effects, especially for
the time series obtained from SM measurements in which
hierarchies of non-stationarity can exist that spoil the con-
vergence of the SSN with respect to increasingLpast.

One possible generalization of the CM to handle nonsta-
tionary time series is to perform a wavelet decomposition
of the time series into a set of stationary series (the de-
tail components) and a non-stationary series (the approx-
imation component) with different timescales. The com-
bination of wavelet decomposition and CM [3, 4], termed
wavelet based CM, allows us to properly quantify the char-
acteristic length of memory for each of the wavelet decom-
posed time series with definite timescale. This avoids poor
statistical accuracy in sampling the past subsequences.

The wavelet based CM can also to some extent resolve
the degeneracy problem inherent in observations since the
original scalar time series is decomposed into a vector time
series with approximation and details as components. More
importantly in defining “states” from scale time series, we
take into account not only the value itself at each instanta-
neous time step, but also the time sequence (i.e., history)
near the instantaneous time step. The combination of CM
with the wavelet decomposition is thus expected to avoid
the degeneracy problem more than just either the standard
CM or wavelet decomposition alone.

The wavelet based CM has been applied to investigate
the dynamics of conformational fluctuations probed by SM
electron transfer (ET) experiment detected on a photon-by-
photon basis [5]. It has been shown [3, 4] that the topo-
graphical features of the SSNs depend on the timescale of
observation; the longer the timescale, the simpler the un-
derlying SSN becomes, leading to a transition of the dy-
namics from anomalous diffusion to normal Brownian dif-
fusion on the multidimensional energy landscape.

4. CM as a Soft Clustering Problem

It is noted that the SSN construction scheme discussed in
Section 2 can be viewed as a clustering problem in which
past subsequences are grouped to form states according to
their transition probability to the future subsequences. In
particular, the clustering scheme described in Section 2 cor-
responds to a “hard” clustering scheme in which each past
subsequence can be assigned to only one state. In practice,
measurement errors can exist in the time series, implying
that uncertainty also presents in the transition probability

P(A|B) from the past subsequencespast
B to the future subse-

quences f uture
A . Such uncertainty may not allow us to per-

form a rigorous hard clustering of the past subsequence into
states, and a soft (or lossy) clustering approach is desired.
In the soft clustering, each past subsequence can belong to
several states with a membership,P(S i|s

past
B ), which speci-

fies the probability that the past subsequencespast
B belongs

to the stateS i. The hard clustering is a special case of the
soft clustering in whichP(S i|s

past
B ) equals to either zero or

one.
Here we argue that bootstrapping method [6] provides

a simple and nonparametric scheme to determine the soft
clustering membershipP(S i|s

past
B ) in the SSN construction

that incorporates the measurement errors. Suppose that one
obtains a symbolic time series,s = (s(t1), s(t2), · · · , s(tN)),
from symbolizing the experimental time seriesx, we fur-
ther assume that there are some uncertainties in assigning
the symbol due to the measurement errors inx such that
at each time instantti, the symbol visited by the system
is specified by a symbolization probability,P(s(ti)|x(ti)).
The explicit form ofP(s(ti)|x(ti)) depends on the particular
symbolization scheme we use and on the statistics of the
measurement errors inx(ti). Next, we generate an ensem-
ble of bootstrapped symbolic time series{sboot

1 , sboot
2 , · · ·},

each with the same length of the original time seriesx, by
random sampling fromP(s(ti)|x(ti)) for all ti. Each boot-
strapped symbolic time seriessboot

j can be viewed as a pos-
sible realization of the symbolic dynamics associated with
the measurement errors. The SSN construction scheme de-
scribed in Section 2, which is a hard clustering scheme,
is then applied to each of the bootstrapped symbolic time
series to obtain the corresponding bootstrapped SSN by
grouping past subsequence into states. Due to the vari-
ations among the bootstrapped symbolic time series, the
assignment of past subsequences to states can also vary
among different bootstrapped SSNs, Finally, the member-
ship P(S i|s

past
B ) can be constructed by counting how many

times a givenspast
B is assigned to the stateS i in the set of

bootstrapped SSNs. It can be easily seen that if no mea-
surement error presents in original time seriesx, the sym-
bolization is unique, i.e.,P(s(ti)|x(ti)) equals to either zero
or one, and so all bootstrapped symbolic time series are the
same. This implies that there is no variation in assigning a
givenspast

B to the states, and therefore, the clustering simply
reduces to a hard clustering one.

5. Concluding Remarks

In this article, we have discussed two possible general-
izations of the CM to handle possible complications one
may face when constructing hidden Markov model from
SM time series. These include the wavelet based CM that
extracts the multiscale SSNs from nonstationary time se-
ries, and the extension to soft clustering in the SSN con-
struction that incorporates the effects of measurement error
into the analysis. We also note here that the SSN construc-
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tion with soft clustering can also be formulated in terms of
the information bottleneck method [7] in which the mem-
bershipsP(S i|s

past
B ) are obtained by finding the best tradeoff

between the predictivity and complexity of the model.
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