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Abstract—Developed in the context of information the- (s(t1), S(t2), - - -, S(tn)) with s(tj) denoting the symbolized
ory, computational mechanics (CM) has been formulatesbservable at timg. Since CM requires a statistical sam-
to construct the minimal but the most predictive hiddempling of subsequences in the symbolic time segethe
Markov model, originally termed-machine, which is able choice of discretization scheme depends not only on the
to reproduce the causal structures statistically from timexperimental resolution but also on the statistical proper
series. Here | will present several generalizations of CMes of the time series. A reasonable discretization is such
to the study of complex dynamics and kinetics of singl¢hat the topological properties of the constructed network
molecule (SM) time series. These include the incorporaticare insensitive to the increase in the number of symbols.
of wavelet decomposition into CM to construct the multi-
scale state-space networks for non-stationary SM time se-The next step in the construction is to trace alang
ries, and the introduction of soft (or lossy) clustering iffor each time stegtj to record which subsequence of
defining states when noise and measurement error presiRgth Luue, S3™° = (S(tis1). -+, StisL i), follows
in the data. consecutively after a subsequence of leniggky, sgf"st =
{S(ti-Lpeg+1)s -+ S(t)} (A, B,--- represent dierent sym-
bolic subsequences that appeas)n The transition prob-
ability from s to s;""®, denoted byP(A|B), is then ob-

Single molecule (SM) experiments provide us withtained for the time series In CM, a “state” (denoted by
unique information on the distribution of molecular prop-Si_hereinafter) is defined by the set of past subsequences

erties and their dynamic behaviors, which are inaccessisy, - Sy .-} With length Lyag whose transition to the

ble from ensemble-averaged measurements. In general, fheure SubsequenCSLUture takes place with the (nearly)
complexity observed in the dynamics and kinetics of a prasame transition probabilities (i.eP(AIB) = P(AB") =
tein originates in the underlying multidimensional energy(A|B”) = --- for all A). A transition from a stat&; to
landscape. The dynamics can be understood as the protaifotherS; is constructed with its weight equal to the tran-
traversing from one state (node) to another along a COMgition probabilityP(sL”t”relsi) if the subsequence;“t“re is
plex network in the state space. The network propertiefenerated from a transition fro® to S; along the time

of biological systems can thereforéfer us new perspec- seriess. The extraction of all states and transitions among
tives to address the nature of hierarchical organizations them yields a SSN associated with the time sesies

the multidimensional state space and its implicationsén th
SM complex kinetics. Here we address how computational Without the needs to postulate the number of states and
mechanics (CM) [1] extracts the state space network (SSI¥)e connectivity of the network, a unique characteristic of
of biological systems explicitly from a SM time series,the CM is that it extracts the underlying SSN directly from
free from a priori assumptions on the underlying physicaime series with length a4 chosen such that the topolog-
model. Moreover, we discuss several generalizations of theal feature of the SSN converges lags increases from
scheme to handle possible complications one may face zero. It has been proven mathematically [2] that the con-
handling real SM time series, such as nonstationarity anagrged SSN makes all transitions among the states Marko-
the presence of measurement errors. vian, i.e., the next state to visit depends only on the ctdirren
states. Moreover, the converged SSN is a hidden Markov
2. Computational Mechanics: Construction of Stater  model with minimal complexity and maximum predictive
Space Network power which can best reproduce the statistics of the time
seriess. The states in the SSN are defined by not simply
We briefly describe how the original CM defines statethe value ofs(t) at each instantaneous time but a subse-
and constructs connections among them from scalar tinggience of symbolss(t;), s(ti-1), S(ti—2), - - -) when memory
series. For a given time serigs= (x(t1), X(t2), - - -, X(ty))  exists in the process. Therefore, the CM provides a natural
of a physical observabl& with continuous values (e.g. means to lift “degeneracy” (fferent physical states hav-
the interdye distance reported by fluorescent probes), vireg the same value in the measured observable) within the
first discretize it to obtain the symbolic sequerge= limited information of scalar time series.

1. Introduction
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3. Construction of Multi-timescale SSN using Wavelet  P(A|B) from the past subsequen@St to the future subse-

Decomposition for SM Nonstationary Time Series  quences;""®. Such uncertainty may not allow us to per-

) . ) form a rigorous hard clustering of the past subsequence into
_ Despite the above attractive features of CM, fidlilty  giaes. and a soft (or lossy) clustering approach is desired
in the original formulation of CM arises when the length, the soft clustering, each past subsequence can belong to
of the past seqt_JenC&Spast increases. In particular, the gayeral states with a memberstﬁQSﬂsgas‘), which speci-
r}umbe.r of possible past s.eq_uen%%?‘ grows exponen- ffies the probability that the past subseques@?é belongs
tlallty With L pas and_ the statistical accuracy in ?amp"“g %o the stateS;. The hard clustering is a special case of the

% becomes rapidly worse due in real applications. A§0ft clustering in Whin‘P(SilsgaSt) equals to either zero or

Sg

a result, with the original procedure it may be too hard t
properly capture long-time memoryfects, especially for
the time series obtained from SM measurements in whic&
hierarchies of non—stati_onarity can e>_<ist that_spoil the-co clustering membershiB(SﬂsEaS‘) in the SSN construction
vergence of_the SSN W"Fh re_spect o increadipg. thatincorporates the measurement errors. Suppose that one
One possible generalization of the CM to handle nonstay, -ine a'symbolic time series = (s(ty), S(ts). - - - (),
tionary time series is to perform a wavelet d<ecompositi0ﬂ0m symbolizing the experimental time serieswe fur-

of the time series into a set of stationary series (the dgse a55ume that there are some uncertainties in assigning
tail components) and a non-stationary series (the approYie symbol due to the measurement error isuch that

irr_1ati9n component) with diergpt timescales. The com- t each time instart, the symbol visited by the system
bination of wavelet decomposition and CM (3, 4], termecf; specified by a symbolization probabilit(s(t)|x(t)).

Wave_let_ based CM, allows us to properly quantify the ChaFl‘he explicit form ofP(s(t;)|x(t)) depends on the particular
acteristic length of memory for each of the Waveletdecon‘g mbolization scheme we use and on the statistics of the
posed time series with definite timescale. This avoids po easurement errors i(t}). Next, we generate an ensem-
., . . 1/ ’

statistical accuracy in sampling the past subsequences. ble of bootstrapped symbolic time seri@”‘ §°°‘ )

The wavelet based CM can also to some extent resoly@ q, with the same length of the original time sexigby
the degeneracy problem inherent in observations since the,jom sampling fronP(s(t)Ix(t,)) for all . Each boot-
original scalar time series is decomposed into a vector ti"ﬁrapped symbolic time serig®° can be viewed as a pos-
series with approximation and details as components. Mogg, e reajization of the symbolic dynamics associated with
importantly in defining “states” from scale time series, Wgne measurement errors. The SSN construction scheme de-
take into account not only the value itself at each instantac.riped in Section 2. which is a hard clustering scheme
neous time step, but also the time sequence (i.e., histoiWhen applied to each of the bootstrapped symbolic time
near the instantaneous time step. The combination of C_%ries to obtain the corresponding bootstrapped SSN by
with the wavelet decomposition is thus expected to avo'arouping past subsequence into states. Due to the vari-

the degeneracy problem more than just either the standafl,ns among the bootstrapped symbolic time series, the
CM or wavelet decomposition alone. _ _ ~assignment of past subsequences to states can also vary
The wavelet based CM has been applied to investigaig,ong diferent bootstrapped SSNs, Finally, the member-

the dynamics of conformational fluctuations probed by Sl\éhip P(SHSgaSt) can be constructed by counting how many
electron transfer (ET) experiment detected on a photon-bM past i assigned to the sta in the set of

mes a give
photon basis [5]. It has been shown [3, 4] that the topg; gIverss

hical f fth p q he ti I gotstrapped SSNs. It can be easily seen that if no mea-
graphical features of the SSNs depend on the timescale 9f o ment error presents in original time sewethe sym-

observation; the longer the timescale, the simpler the UBGlization is unique, i.e P(s(t)Ix(t)) equals to either zero

derlymgf SSN becorres,f!;jejagjmg toa tralnsmon 9f tr:ff dyc')r one, and so all bootstrapped symbolic time series are the
namics from anomalousfiusion to normal Brownian dif- - g5 6 “This implies that there is no variation in assigning a

fusion on the multidimensional energy landscape. given sgaSt to the states, and therefore, the clustering simply
reduces to a hard clustering one.

Here we argue that bootstrapping method [6] provides
simple and nonparametric scheme to determine the soft

4. CM asa Soft Clustering Problem

5. Concluding Remarks
Itis noted that the SSN construction scheme discussed in

Section 2 can be viewed as a clustering problem in which In this article, we have discussed two possible general-
past subsequences are grouped to form states accordingzttions of the CM to handle possible complications one
their transition probability to the future subsequences. Imay face when constructing hidden Markov model from
particular, the clustering scheme described in Section-2 cdSM time series. These include the wavelet based CM that
responds to a “hard” clustering scheme in which each pasktracts the multiscale SSNs from nonstationary time se-
subsequence can be assigned to only one state. In practiees, and the extension to soft clustering in the SSN con-
measurement errors can exist in the time series, implyirgruction that incorporates théects of measurement error
that uncertainty also presents in the transition prohighbili into the analysis. We also note here that the SSN construc-
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tion with soft clustering can also be formulated in terms of
the information bottleneck method [7] in which the mem-
bershipP(Si|si**) are obtained by finding the best tradieo
between the predictivity and complexity of the model.
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