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Abstract—We propose a simple visualization method
for detecting the stretch-and-fold mechanism in chaotic dy-
namical systems. In the proposed method, we first place a
rectangle that is centered at a point on the trajectory of a
chaotic attractor and then uniformly arrange points on the
rectangle. Next, applying the dynamics and observing the
temporal evolution of the center point and the uniformly
arranged points on the rectangle, we track the temporal
evolution of the distances between the center point and the
points on the rectangle. Finally, we express them using
multiple colors and draw the colors representing the dis-
tances at the initial position on the rectangle. Then, track-
ing the temporal changes of these colors generated by the
temporal evolution of the distances, we can observe the ap-
pearance of stripe patterns on the rectangle over time in the
case of chaotic dynamics. We show that our method can
detect the stretch-and-fold mechanism in chaotic dynam-
ics by the stripe pattern. In addition, the stripe patterns are
evaluated quantitatively.

1. Introduction

Several complex phenomena that exist in the real world
might be produced from a deterministic nonlinear, possi-
bly chaotic, dynamical system. In this sense, it is one
of fundamental issues to elucidate mathematical structures
of chaotic dynamics toward understanding of the complex
phenomena and various technological applications.

The orbital instability and nonlinear folding are one of
the basic and important features of chaotic dynamics. Even
though two nearby trajectories separate exponentially in
chaotic dynamical systems, they either remain within a fi-
nite phase space. These features are realized by the stretch-
and-fold mechanism in chaotic dynamics [1]. Without the
stretch-and-fold mechanism, chaotic attractors cannot be
observed because two nearby trajectories simply diverge.

To analyze the stretch-and-fold mechanism, several
methods have been proposed. The methods based on the
Poincaré section are the most basic tool to visualize the
stretch-and-fold mechanism in chaotic dynamics (see for

example, [2, 3, 4, 5, 6, a]). If we appropriately arrange the
Poincaré section, we can effectively visualize the stretch-
and-fold mechanism. However, it is not so easy to arrange
the sections on the chaotic attractors because of the vari-
ety of spatial structures of the chaotic attractors even in a
low-dimensional state space.

Another possible approach is visualization of the long
time evolution of points on the attractor. In this approach, a
small sphere is prepared in a state space, and points are ar-
ranged on the surface of the small sphere. Then, the points
on the small sphere are evolved by the rules of a dynam-
ical system. The temporal evolution of the small sphere
is tracked over time. However, if the temporal evolution
of the small sphere is directly visualized, the points on the
small sphere gradually distribute on the chaotic attractor,
then the stretch-and-fold mechanism cannot be visualized
because of the long term unpredictability of chaotic dynam-
ics. To improve this point, a simple effective visualization
method which is different from the conventional ones have
been proposed in Refs. [7, b]. In the method, a small hy-
persphere which is centered at a point on a trajectory in the
state space of the chaotic dynamics is prepared, and points
are uniformly arranged on the surface of the small hyper-
sphere. Then, the points on the hypersphere are evolved
by the evolution rule of the chaotic dynamics and tracked
over time. The key point of the method in Ref. [7] is that
we observe a temporal change in the distances between
the center point and the points on the surface of the hy-
persphere not on the attractor but on the initial position of
the hypersphere. The temporal changes in the distances are
described by multiple colors, which the points on the ini-
tial hypersphere are colored based on the distances. If the
dynamics is chaotic, the stretch-and-fold mechanism is vi-
sualized by a stripe pattern on the initial hypersphere.

In this paper, we investigate quantitatively how the stripe
pattern changes over time and thereby distinguish the dy-
namic regimes of the dynamical systems. In Ref. [7], to vi-
sualize the stretch-and-fold mechanism, the hypersphere is
used. To investigate the temporal changes of the stripe pat-
tern, we here use a more simple object — rectangle — in-
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stead of the hypersphere. This simple improvement enables
us to evaluate the stripe patterns qualitatively. In numeri-
cal experiments, we apply the proposed method to three-
dimensional chaotic dynamical systems and show that the
stripe patterns can be observed even on the rectangle, or
a two-dimensional image. In addition, we show that the
stripe patterns formed by the chaotic dynamics have some
characteristic properties by the numerical simulations.

2. Method

Let a point on an n-dimensional phase space at time t
be x(t) = (x1(t), x2(t), . . . , xn(t)), (t = 1, . . . , T ). In
our method, we firstly place a rectangle along the trajectory
of a chaotic dynamical system so that its center is a point
x(t0) on the trajectory. Next, m points are arranged on
the rectangle and they are evolved by the dynamics. Track-
ing temporal changes in the distances between the center
point and the points on the rectangle, we can visualize the
stretch-and-fold mechanism. The algorithm is shown in the
following:

1. At the initial time t0, a rectangle which is centered at
x(t0) (∈ Rn) is prepared. The rectangle is a square l
on a side, and the parameter l is set to 5% of the max-
imum distance between points on an attractor through
this paper. The point x(t0) is included in the trajectory
of the n-dimensional dynamical system defined by
ẋ = F (x). Then, m points r1(t0), r2(t0), . . . rm(t0)
are uniformly arranged on the rectangle.

2. The points ri(t) (i = 1, . . . , m) are evolved by the
dynamical system. The time t is increased by ∆t,
such that t ← t + ∆t. We defined the ith time ti
as ti ≡ t0 + i∆t.

3. The distances between the center point x(t) and the
points ri(t) are calculated by di(t) = ‖x(t)− ri(t)‖,
where ‖ ·‖ shows the Euclidean norm. The point ri(t)
is then colored by the distance di(t). In addition, the
points ri(t0) (i = 1, . . . ,m) which maintains the ini-
tial rectangle shape are also colored by di(t).

4. Steps 2 and 3 are repeated.

The points on trajectories are usually distributed over the
chaotic attractor as time evolves. However, in the step 3,
coloring the points ri(t0) on the initial rectangle shape by
the distance di(t), we can observe how the rectangle is
evolved with time through the temporal changes in colors
of the points on the initial rectangle shape. When we color
the points, a value for the hue in the HSV color space is
set to the distance di(t), which di(t) = 0 corresponds to
H = 0◦ and maxi di(t) corresponds to H = 360◦. We set
values of both S and V to 100%.

3. Numerical experiments

We conduct numerical experiments for well-known sys-
tems which are the Rössler system [9]: ẋ = −(y + z), ẏ =
x + 0.2y, ż = 0.2 + z(x − c), the chaotic Lorenz system
[10]: ẋ = −10x+10y, ẏ = −xz+28x−y, ż = xy−8z/3,
the chaotic Chua circuit [11, 12]: ẋ1 = 9(x2 + 5x1/7 +
3(|x + 1| − |x − 1|)/14), ẋ2 = x1 − x2 + x3, ẋ3 =
−10x2/49, and the Langford equations [8] to generate a
two-torus: ẋ = (z − 0.7)x − 3.5y, ẏ = 3.5x + (z −
0.7)y, ż = 0.6 + z − z3/3 − (x2 + y2)(1 + z/4). In
the numerical experiments, we generate the period-2 (c =
3.5), period-4 (c = 4), period-8 (c = 4.18), and chaotic
(c = 5.7) attractors from the Rössler system for compari-
son. We integrate the dynamical systems with the fourth-
order Runge-Kutta method. The temporal step ∆t is set to
0.01 for the Rössler system, the Langford equation, and the
Chua circuit, and ∆t is set to 0.005 for the Lorenz system.

Figures 1 and 2 show examples of rectangles which are
evolved by the dynamical systems. The initial rectangles
colored according to distances between a center point and
points on the rectangle are also depicted in the right hand
side of the figures. From Figs. 1(a), 1(b), 1(c), and 2(a), if
the attractors are periodic or a two-torus, no stripe patterns
appear. On the other hand, if the dynamics is chaotic, the
dense stripe patterns are formed due to the stretch-and-fold
mechanism [7] as shown in Fig. 2 (b), (c), and (d). From
there results, it is shown that the stretch-and-fold mecha-
nism of the three-dimensional systems can be described on
the rectangles, or the two-dimensional image.

To evaluate the stripe patterns on the initial rectangle
quantitatively, we investigate the changes of the number
of segments which consist of points whose colors are the
same each other and the distribution of the number of the
points which are contained in each segment. To calculate
them, we firstly divided the initial rectangles into multiple
segments according to the colors of the points on the initial
rectangles.

Let θ be the threshold which is defined by |maxi di(t)−
minj dj(t)|/Nc, where the number of colors Nc is a param-
eter to determine the threshold. If nearby two points ri(t0)
and rj(t0) on the initial rectangle have the same color at
time t, or kθ + dmin(t) ≤ di(t), dj(t) < (k + 1)θ +
dmin(t) (dmin(t) ≡ minl dl(t), k = 0, 1, . . . , Nc − 1),
they are contained in the same segment. Through the nu-
merical experiments, we set the parameter Nc to eight.

Figure 3 shows how the number of the segments changes
with time. From Fig. 3, the number of the segments quickly
increases with time if the dynamics is chaotic, but the num-
ber of the segments dose not increase in the case of the
periodic attractors and the two-torus. These results imply
that the speed of increases of the number of the segments
might depends on the maximum Lyapunov exponent of the
dynamical systems. When the rectangles are stretched and
folded repeatedly by the chaotic dynamics, the number of
the points contained in each segment becomes small with
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(a) Period-2

(b) Period-4

(c) Period-8

Figure 1: Examples of the rectangles for (a) the period-2,
(b) the period-4, (c) the period-8, and the number of points
on the rectangle is 40,000.

time and approaches to the number of the points on the
rectangle. Then, the stripe patterns on the initial rectangles
disappear.

Figure 4 shows the distribution of the number of the
points which are contained in the same segments in the case
of the chaotic dynamical systems, which is described in the
logarithmic scale. From Fig. 4, the distributions obey the
power law. The slope of the lines in Fig. 4 is about two,
which is a similar value to the fractal dimension of these
chaotic attractors. The reason is that the number of times
that the rectangles are stretched and folded relates to the
number of the segments on the rectangles. Because of this,
the distributions of the number of the points in the segments
might reflect the fractal dimension of the chaotic attractors.

4. Conclusion

In this paper, we proposed a simple visualization method
for the stretch-and-fold mechanism in chaotic dynam-
ics. We firstly applied the proposed method to three-
dimensional chaotic dynamical systems and showed that
the stretch-and-fold mechanism can be visualized by the
stripe patterns on the rectangles. One of the advan-

(a) Two-torus

(b) Rössler attractor

(c) Double scroll attractor

(d) Lorenz attractor

Figure 2: Examples of the rectangles for (a) a two-torus
from the Langford equation (T = 3, 000), (b) the chaotic
attractors from the Rössler system (T = 3, 000), (c) the
chaotic Lorenz attractor (T = 2, 000), and (d) the double
scroll attractor from the Chua circuit (T = 3, 000). The
number of points on the rectangle is 40,000.

tages of our method is that we can describe the stretch-
and-fold mechanism of the chaotic dynamics on the two-
dimensional rectangle. In addition, through the analysis of
the stripe patterns, we quantitatively evaluated the forma-
tion of the stripe patterns and discussed the speed of in-
creases of the number of segments on the rectangle and the
distribution of the number of points contained in each seg-
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ment. As a future work, we will apply our method to higher
dimensional chaotic dynamical systems.
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Figure 3: The changes in the number of the segments with
time. The number of points on the rectangle is 40,000.
The horizontal axis shows the time step ti = ∆t × i (i =
1, . . . , 24, 000). The vertical lines show the first time when
the number of the segments is equal to the number of points
on the rectangle for the results of the chaotic attractors.
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Figure 4: The distribution of the number of points con-
tained in each segment L. The number of points on the
rectangle is 129,600. The time T of the Rössler system and
the Chua circuit is 3, 000, and that of the Lorenz system is
1, 500.
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