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Abstract—In this article, a verified numerical contin-
uation method is proposed for a nonlinear operator equa-
tion. Numerical continuation method calculates solution
curve of parameterized nonlinear equation approximately.
Although the verified numerical computation yields point
wise proofs of the solution curve, continuous branch fol-
lowing is difficult to be proved. On the basis of the implicit
function theorem, a smooth solution branch of Ambrosetti-
Prodi’s type problem is obtained by our verified continua-
tion approach.

1. Introduction

Let R be the set of real numbers. V is assumed to be a
Hilbert space. In this article, we consider to find (u, λ) ∈
V × R such that

G(u, λ) = 0 in V. (1)

Here, G is a nonlinear map from V × R to V . The aim of
this article is to pursue the solution path of parameterized
nonlinear operator equation explicitly. The solution path
is the set of equilibria: E = {(u, λ) ∈ V × R : G(u, λ) = 0}.
Numerical continuation method, which calculates the so-
lution curve of parameterized nonlinear equation approx-
imately, is known as an efficient approach for the prob-
lem (1). There are several techniques of getting a solution
branch numerically. It is difficult to prove the existence of
exact solution around the approximate solution due to some
computational errors of approximation.

On the other hand, verified computations of nonlinear
operator equation [1, 2, 3] etc. enable us to figure out all er-
rors in computation explicitly. Methods of verified compu-
tations have been developed over the last two decades. For
a fixed λ, we can prove the existence and local uniqueness
of the exact solution with computer-assistance. Although
the verified computation yields point wise proofs of the so-
lution path, continuous branch following is still difficult to
be proved. This article propose a method of smooth con-
tinuation for the parameterized nonlinear operator equation
(1) on the basis of the implicit function theorem. We call
the proposed method as verified continuation method.

2. Notation and formulation

Let Ω be a bounded polygonal or polyhedral domain
in Rd (d = 1, 2, 3). We denote the usual Lebesgue and
Sobolev spaces on Ω by L2(Ω) and H1(Ω) = W1,2(Ω). The
L2 inner product is denoted by

(u, v)L2 :=
∫
Ω

uT vdx for u, v ∈ L2(Ω)d.

Let us set a function space V := {v ∈ H1(Ω) : v = 0 on ∂Ω}.
Here, v = 0 on ∂Ω is in the trace sense. We endow a inner
product with (u, v)V := (∇u,∇v)L2 for u, v ∈ V .

In this article, we consider the following parameterized
nonlinear elliptic problem:{

−∆u = f (u, λ) in Ω,
u|∂Ω = 0, (2)

where f : H1
0(Ω) × R → L2(Ω) is assumed to be Fréchet

differentiable with respect to u and λ. Let λ be a real pa-
rameter. The variational formulation of the problem (2) is
given as: Find (u, λ) ∈ V × R such that

(∇u,∇v)L2 − ( f (u, λ), v)L2 = 0, ∀v ∈ V.

From the Riesz representation theorem, we can define a
nonlinear operator G : V × R→ V by

(G(u, λ), v)V := (∇u,∇v)L2 − ( f (u, λ), v)L2 , ∀v ∈ V.

Then, the problem (2) is described by the operator equa-
tion (1) equivalently. The partial Fréchet derivative of
G corresponding to u at (u0, λ0) ∈ V × R is denoted by
Gu[u0, λ0] : V → V . For v ∈ V , it satisfies

(Gu[u0, λ0]v,w)V := (∇v,∇w)L2−( fu[u0, λ0]v,w)L2 , ∀w ∈ V,

where fu[u0, λ0] is the partial Fréchet derivative of f with
respect to u at (u0, λ0). Furthermore, the partial Fréchet
derivative of G with λ at (u0, λ0) is denoted by Gλ[u0, λ0] :
R→ V . For µ ∈ R,

(Gλ[u0, λ0]µ,w)V := −µ( fλ[u0, λ0],w)L2 , ∀w ∈ V,

where fλ[u0, λ0] is the partial Fréchet derivative of f with
λ at (u0, λ0).
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Consider a regular triangulation of Ω. The Lagrange fi-
nite element space Vh ⊂ V will be used to find the approx-
imate solution of (2). The function in Vh is a continuous
function over the domain and its restriction on each ele-
ment is a polynomial of a certain degree. Let Ph be the
operator to project V onto Vh with the inner product (·, ·)V .
It satisfies

(u − Phu, vh)V = 0, ∀vh ∈ Vh.

Assuming that the following a priori error estimate holds

‖u − Phu‖V ≤ Mh‖∆u‖L2 , ‖u − Phu‖L2 ≤ M2
h‖∆u‖L2 .

The error constant Mh depends only on the mesh size h, the
degree of polynomial, and the solution singularity.

3. Simple parameter continuation

This part is devoted to explaining a parameter continua-
tion algorithm. Numerical continuation methods compute
a family or path of solutions of (1) in the finite dimensional
space Vh × R. Suppose that we are given an approximate
solution (u0, λ0) ∈ Vh × R of (1). The idea of simple pa-
rameter continuation is to find a solution at λ = λ0 + δλ for
a small perturbation δλ. Then, we can follow the solution
path step by step.

u

u0 : initial solution

ū : predictor

��0 �0 + ��

Figure 1: Simple parameter continuation

This is also called the predictor-corrector method which
proceeds in two steps. First, we predict the rough approx-
imation of solution at λ. Second, the corrector step refines
the initial approximation by using Newton’s method. For a
given λ and an initial guess ū ∈ Vh of the solution u(λ), we
iterate the following steps until ‖δu‖ < ε is satisfied for a
small ε > 0,

(Gu[ū, λ]δu, vh)V = −(G(ū, λ), vh)V , ∀vh ∈ Vh,

ū = ū + δu.
(3)

When it stops, the solution u(λ)(= ū) is determined on the
basis of Newton’s method. It is well known that the proce-
dure will converges quadratically when the initial guess is
sufficiently close to the solution. In particular, the simple
parameter continuation uses the previous solution u0 as the
predictor in the next step. Then, the corrector step compute
the solution u(λ) by the Newton iterations, see Figure 1.

Algorithm 1 (Simple parameter continuation) Given a
known solution (u0, λ0) ∈ Vh × R, we compute the solution
at nearby value λ = λ0 + δλ as follows:

1. Determine the predictor ū = u0 by the solution at λ0.

2. Refine the initial guess by Newton’s iteration (3) until
convergence.

3. Use (u(λ), λ) ∈ Vh × R as the new initial entry (u0, λ0)
and go back to Step 1.

Suppose that (u(λ), λ) is obtained for each fixed λ. The
original problem (1) is transformed into

Find u ∈ V such that F(u) = 0 in V. (4)

F : V → V is assumed to be the Fréchet differentiable map-
ping with respect to u. Let û := u(λ) ∈ Vh be the approx-
imate solution to (4). The Fréchet derivative of F at û is
denoted by Fu[û] : V → V . In order to verify the existence
and local uniqueness of the exact solution in the neighbor-
hood of û, we consider to apply the Newton-Kantorovich
theorem.

Theorem 1 (Newton-Kantorovich)
Assuming the Fréchet derivative Fu[û] : V → V is nonsin-
gular and satisfies

‖Fu[û]−1F(û)‖V ≤ α,

for a certain positive α. Then, let

B(û, 2α) := {v ∈ V : ‖v − û‖V ≤ 2α}

be a closed ball centered at û with radius 2α. Let also
D ⊃ B(û, 2α) be an open ball in V. We assume that for a
certain positive ω, it holds:

‖Fu[û]−1(Fu[v] − Fu[w])‖V,V ≤ ω‖v − w‖V , ∀v,w ∈ D.

If αω ≤ 1
2 holds, then there is a solution u ∈ V of (4)

satisfying

‖u − û‖V ≤ ρ :=
1 −
√

1 − 2αω
ω

.

Furthermore, the solution u is unique in B(û, ρ).

Corollary 2 To apply the Newon-Kantorovich theorem, we
calculate three constants below explicitly.

‖Fu[û]−1‖V,V ≤ C1, (5)
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‖F(û)‖V ≤ C2,h,

‖Fu[v] − Fu[w]‖V,V ≤ C3‖v − w‖V , ∀v,w ∈ D ⊂ V.

The constants C1, C2,h and C3 yield

‖Fu[û]−1F(û)‖V ≤ C1C2,h,

and

‖Fu[û]−1(Fu[v] − Fu[w])‖V,V ≤ C1C3‖v − w‖V .

Therefore, if the condition C2
1C2,hC3 ≤ 1/2 is confirmed

by verified numerical computations, then the existence and
local uniqueness of the solution are proved numerically
based on the Newton-Kantorovich theorem.

Then, for each point u(λ), we can validate the existence and
local uniqueness of exact solution. Although the verified
computation yields point wise proofs of the solution path,
continuous branch following is still difficult to be proved.

4. A verified continuation method

In this section, we propose a method of verifying con-
tinuous solution curve of parameterized nonlinear operator
equation (1). On the basis of radii polynomials, there are
one existing method to compute continuous solution path
[4]. Through the method derives precise estimate, it deeply
depends on base functions of approximation. It is difficult
to apply the method to the finite element method. The ba-
sic tool for the verified continuation is the implicit func-
tion theorem. First, we note some assumptions which need
to prove the implicit function theorem. We fix (u0, λ0) ∈
Vh × R. Assuming Gu[u0, λ0] is nonsingular and satisfies

‖Gu[u0, λ0]−1‖V,V ≤ b0.

Gλ[u0, λ0] is bounded by

‖Gλ[u0, λ0]‖R,V ≤ K0.

Furthermore, it follows that

‖G(u0, λ0)‖V ≤ ρ0.

Setting r0 > 2b0ρ0 and ε > 0, let us define

B(u0, r0) := {v ∈ V : ‖v − u0‖V ≤ r0}

and
B(λ0, ε) := {λ ∈ R : |λ − λ0| ≤ ε}.

Suppose that there exist constants M,N ≥ 0 satisfying

‖Gu[v, λ] −Gu[w, λ]‖V,V ≤ M‖v − w‖V
and

‖Gλ[v, λ] −Gλ[w, λ]‖R,V ≤ N‖v − w‖V

for ∀λ ∈ B(λ0, ε) and ∀v,w ∈ B(u0, r0). Under the as-
sumption above, the implicit function theorem for verified
continuation is obtained as below.

Theorem 3 (Implicit function theorem) Let b0, K0, ρ0,
r0, M, and N satisfy the previous inequalities. In addition,
we obtain a constant denoted by

K(ε) = sup
(u,λ)∈B(u0,r0)×B(λ0,ε)

‖Dλ[u, λ]‖R,V

If

r0 − 2b0ρ0 ≥ 2b0K(ε)ε and b0(Mr0 + Nε) < 1

holds, then there uniquely exists u(λ) ∈ B(u0, r0) satisfying
(1) for ∀λ ∈ B(λ0, ε).

The implicit function theorem is computable because the
radii of balls r0 and ε explicitly. This theorem is also called
the constructive implicit function theorem. On the basis
of the implicit function theorem and verified computation
using Newton-Kantorovich’s theorem, we propose a pro-
cedure of verified continuation algorithm. The algorithm
uses the simple parameter continuation mentioned in the
previous section.

�0 �0 + �

・・・

u

�

Figure 2: Existence of continuous solution path

Algorithm 2 (Verified parameter continuation) Given a
known solution (u0, λ0) ∈ Vh×R and δ > 0, we validate the
solution existence in the interval [λ0, λ0 + δ] as follows:

1. Verify the exact solution around (u0, λ0) by Newton-
Kantorovich’s theorem. If the verification fails, then
the algorithm ends in failure.

2. Put a small perturbation δ > 0 and determine a pre-
dictor ū = u0.

3. Compute u(λ0 + δ/2) ∈ Vh as a corrector by Newton’s
iterations.

4. Prove the existence of exact solution in the box:
B(u0, r0) × B(λ0, δ/2) using the implicit function theo-
rem. If the theorem is not obtained, go to Step 6.
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5. Update u0 = u(λ0+δ) and λ0 = λ0+δ, go back to Step
1.

6. Update δ = δ/2 and go back to Step 3.

The algorithm verifies the existence and local uniqueness
of exact solution of (1) in each box B(u0, r0) × B(λ0, δ/2).
For every step, boxes will connect each other, see Figure 2.
Then, we prove a continuous solution path uniquely. The
continuation method may fail at some step because of the
existence of singularities on the solution curve (e.g. folds
or bifurcation point). Near the singular points there exist
more than one solution and the implicit function theorem
is not valid. In that case, another technique of continuation
is needed.

5. Application to Ambrosetti-Prodi problem

The verified continuation algorithm is applicable to the
Ambrosetti-Prodi type problem:{

−∆u = g(u) + λh(x) in Ω,
u|∂Ω = 0. (6)

As a typical example of the Ambrosetti-Prodi type prob-
lem, we consider g(u) = u2 and h(x) = 1. The domain Ω
is the unit square Ω = (0, 1)2. All computations are carried
out on a Cent OS 6.3, 3.10GHz Intel Xeon E5-2687W. We
use MATLAB2012a with INTLAB version 6 [5].
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Figure 3: Point wise proof of (2)

The verified computation in [3] proves that the exact
solution of (6) uniquely exists in the neighborhood of its
approximation. Figure 3 shows the point wise existence
proof of the exact solution. Sufficient condition of Newton-
Kantorovich’s theorem is satisfied on each point. The shape
of the solution path can also be expected in Figure 3. It
seems to have a fold point around λ ≈ 84.

Furthermore, the verified continuation method yields a
continuous solution path in several boxes in Figure 4. Be-
cause of the singularities on the fold point, the contin-
uation method is failed. The upper branch is failed at
λ1 = 83.138437. The lower branch is available to pur-
sue until λ2 = 83.217876. Then, there exist at least two

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

λ

||u
||

24 26 28 30 32 34

49

50

51

52

53

54

55

56

57

λ

||u
||

Figure 4: Continuous solution path

solution of (6) in the case of λ ≤ λ1. The fold point is
difficult to treat only by the simple continuation method.
Pseudo-arclength continuation is proposed by H.B. Keller
to overcome this difficulties. Using the method, we will
construct another verified continuation method in future.
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