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Abstract—For various interpolation error constants that
appear in the numerical analysis of the finite element
method and so on, we consider to give a uniform frame-
work to estimate these constants with high precision.

1. Introduction

The problem to estimate the constants is in fact to bound
the eigenvalues of certain differential operators. Our pro-
posed framework contains two parts: first, based on the fi-
nite element method, we give bounds for the leading eigen-
values of the differential operators in consideration; sec-
ond, high precision bounds are provided by further adopt-
ing the Lehmann-Goerisch method. In this paper, we focus
on the first step.

2. Error constants in Rayleigh quotient form

There are various interpolation error constants for the in-
terpolation functions( see, e.g., [1, 4]), most of which can
be characterized by the Rayleigh quotient form,

C−2 := inf
u∈V

R(u), R(u) :=
N(u, u)
D(u, u)

, (1)

where V is certain function space; N(·, ·) and D(·, ·)
are positive symmetric bilinear forms; D(·, ·) is positive
definite. Define | · |D :=

√
D(·, ·) and | · |N :=

√
N(·, ·).

Let’s denote the stationary point and values of R(u) by
λ1 ≤ λ2 · · ·. A direct fact is that C2 = 1/λ1.

Below we show several constants defined on a triangle
T , for which the edges and nodes are denoted by {ei}, {pi}

(i = 1, 2, 3), respectively.
Example 1: Let us consider the constant appearing in the
following interpolation estimation:

‖u − π0u‖0 ≤ c01|u|1 (2)

where π0u is constant function such that∫
e1

u − π0uds = 0 .

In case of K being isosceles right triangle, the optimal con-
stant c in (2) is just the Babuska-Aziz constant. The con-
stant c01 is characterized by

c−1
01 := inf

v∈H1(T )

|u|1
‖u − π0u‖0

In this case, we can choose the terms in (1) to be : V =

H1(T ) \ P0(T ),

D(u, u) = ‖u − π0u‖20 , N(u, u) = |u|21 .

Example 2: Let us consider the interpolation constant
for Fujino-Morley interpolation:

|u − π2u|1 ≤ c11|u|2 , (3)

where π2u is a quadratic polynomial such that∫
ei

∇(u − π2u) · nds = 0 (i = 1, 2, 3) ,

u(pi) − π2(pi) = 0 (i = 1, 2, 3) .

The constant c11 is characterized by

c−1
11 := inf

v∈H2(T )

|u|2
|u − π2u|1

Thus, to characterize the constant c in the form (1), we
choose V = H2(T ) \ P1(T ) and

D(u, u) := |u − π2u|21, N(u, u) := |u|22

3. Lower bound of eigenvalues

Let us calculate the eigenvalues λi of (1) approximately.
Suppose Vh is a finite dimensional space over triangulation
T h of T , which may not be a subspace of V . The discrete
eigenvalues characterized by Rayleigh quotient R over Vh

are denoted by λ1,h ≤ λ2,h · · ·.
Let Ph : V → Vh be a projection such that

N(u − Phu, vh) = 0, ∀vh ∈ Vh

and suppose an error estimation for Ph is

|u − Phu|D ≤ Mh|u − Phu|N

Then we have the following theorem to bound the eigen-
values from below.

Theorem 1 If λk,hMh < 1, k < dim(Vh), then

λk,h

1 + λk,hM2
h

≤ λk, (i = 1, · · · , k)

Remark 1: The proof is a simple extension of the method
developed in our latest paper [2] or [3], where the projec-
tion Ph is a generalized one.
Remark 2: Since we do not require Vh ⊂ V , one can not
expect that λk,h gives an upper bound for λk.
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4. Construction of Vh and Ph

To apply Theorem 1, we need to define Vh and Ph for
each interpolation.

For the interpolation π0, we choose Vh to be the piece-
wise linear conforming FEM space. Denoted by Ph,1 the
corresponding projection,

(∇(u − Ph,1u),∇vh) = 0, ∀vh ∈ Vh ,∫
e1

Ph,1u − uds = 0.

Noticing that π0(u − Ph,1u) = 0, we consider

‖u − Ph,1u‖0 ≤ Mh,1|u − Ph,1u|1.

The estimation for Mh,1 can be estimated by using the result
in [1].

For the interpolation π2, we choose Vh to be

Vh :=
{
vh | on each K ∈ T h, vh|K ∈ P2(K);

∫
e

∂vh

∂n
ds is continuous on inner edges e;

vh is continuous at the nodes. }

The Rayleigh quotient over Vh is defined by using new bi-
linear forms: for uh ∈ Vh,

Dh(uh, uh) =
∑
K∈T h

∫
K
|∇(uh − π2uh)|2dxdy ,

Nh(uh, uh) =
∑
K∈T h

∫
K
|∇2uh|

2dxdy .

Notice that Dh(·, ·) = D(·, ·), Nh(·, ·) = N(·, ·) for u ∈ H2(T ).
The corresponding projection Ph,2 is taken to be the

Fujino-Morley interpolation of u on each element K, that
is,

(Ph,2u)|K = π2(u|K) ,

which has the property that for u ∈ H2(T )

Nh(u − Ph,2u, vh) = 0, ∀vh ∈ Vh .

We further need the following estimation

|(u − Ph,2u) − π2(u − Ph,2u)|1 ≤ Mh,2|u − Ph,2u|2 .

Since π2(u − Ph,2u) = 0, the above estimation is

|u − Ph,2u|1 ≤ Mh,2|u − Ph,2u|2 ,

where the quantity Mh,2 can be bounded by adopting the
Babuska-Aziz technique.

5. Sharpen upper bounds by applying Lehmann-
Goerisch’s theorem

Once we have a rough lower bound ν for λk+1 by us-
ing FEM, such that λk < ν ≤ λk+1, we can then apply the
Lehmann-Goerisch’s theorem to polynomial bases to ob-
tain well improved bounds for leading eigenvalues λ1, · · ·,
λk [5]. Thus a much sharped upper bound for the constants
become available. The detailed talk on this method will be
omitted here.

Summary: In this paper, we proposed a uniform frame-
work to bound the interpolation constants with high preci-
sion. The computation result and the application to other
interpolations will be given in the subsequent presenta-
tions.
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