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Abstract—The absence of time-reversal symmetry is a
fundamental property of nonlinear time series. Here, we
propose a novel set of statistical tests for time series re-
versibility based on visibility graphs. Specifically, we sta-
tistically compare the distributions of time-directed vari-
ants of some common graph-theoretical measures like de-
gree and local clustering coefficient. Unlike other tests for
reversibility, our method has the important advantage of
not requiring the construction of surrogate time series. We
illustrate its potentials for time series from paradigmatic
model systems with known time-reversal properties as well
as some real-world paleoclimate data.

1. Introduction

Motivated by the advent of complex network theory dur-
ing the last decade [1, 2], a number of techniques for
network-based time series analysis have been proposed re-
cently [3]. Among other successful approaches [4, 5, 6, 7],
the application of visibility graph (VG) methods to time
series has recently attracted specific interest [8, 9]. Orig-
inally, VGs have been introduced for the analysis of mu-
tual visibility relationships between points and obstacles in
two-dimensional landscapes in the framework of computa-
tional geometry. Lacasa et al. [8] adopted this concept to
the analysis of structures in scalar, univariate time series.
One important aspect of the resulting network structures is
that their degree distributions can be used for obtaining a
classification of time series and are in particular closely re-
lated with eventual fractal and multifractal properties of the
underlying data. This relationships makes VGs and related
concepts promising candidates for applications to observa-
tional time series from various fields of research [10].

In this work, we demonstrate that VGs can be used for
statistically testing the reversibility properties of observa-
tional time series. For this purpose, we define time-directed
variants of vertex characteristics, the distributions of which
can be statistically evaluated and compared. The remainder
of this paper is accordingly organized as follows: The basic
principles behind the construction of VGs are reviewed in
Sect. 2. Subsequently, we introduce time-directed variants
of the degree and local clustering coefficient as two partic-
ularly prominent vertex characteristics. Conceptually re-
lated approaches are briefly discussed. A systematic anal-

ysis of the resulting probability distributions for different
linear (time-reversible) as well as non-linear (irreversible)
processes is presented in Sect. 3 to illustrate the power of
the proposed approach. Motivated by the very promising
results obtained for these model systems, we furthermore
apply our method to a well-studied paleoclimate time se-
ries describing the temperature variations over Greenland
during the last glacial cycle. Finally, the main conclusions
of our research are summarized in Sect. 4.

2. Methodology

2.1. Visibility Graphs

VGs provide a simple mapping from the time series to
the network domain by exploiting certain convexity char-
acteristics of scalar (univariate) time series {x(ti)}Ni=1. Here,
each observation x(ti) is assigned a vertex i of a complex
network, which is uniquely defined by the time of observa-
tion ti. Two vertices i and j are linked by an edge (i, j) iff
the convexity condition [8]

xk < x j + (xi − x j)
t j − tk
t j − ti

(1)

holds for all vertices k with ti < tk < t j (see Fig. 1). That
is, the corresponding adjacency matrix completely describ-
ing the VG as a simple undirected and unweighted network
reads

A(VG)
i j = A(VG)

ji =

j−1∏
k=i+1

Θ

(
x j + (xi − x j)

t j − tk
t j − ti

− xk

)
, (2)

where Θ(·) is the Heaviside function defined in the usual
way. The corresponding construction algorithm implies
that VGs are spatial networks with vertices embedded on
the one-dimensional time axis, which leads to the emer-
gence of boundary effects on commonly studied network
measures at the respective ends of the time series [10]. In
turn, we emphasize that VGs have the important advantage
that one does not need to require a uniform sampling of
observations in time, which is a major problem of many
existing (linear and nonlinear) methods of time series anal-
ysis when working with real-world observational data, e.g.
in paleoclimatology or astrophysics. This fact makes VGs
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Figure 1: Schematic illustration of the construction princi-
ple of a VG.

a promising candidate for analyzing the properties of such
records.

As a noteworthy variant of the basic VG approach, the
alternative concept of horizontal visibility graphs (HVGs)
has been recently introduced [9]. For a given time series,
the vertex sets of VG and HVG are the same, however, the
edge set of the HVG is defined by the mutual horizontal
visibility of two observations xi and x j, i.e., there is an edge
(i, j) iff xk < min(xi, x j) for all k with ti < tk < t j:

A(HVG)
i j = A(HVG)

ji =

j−1∏
k=i+1

Θ (xi − xk) Θ
(
x j − xk

)
. (3)

We note that although the HVG algorithm appears some-
what simpler, VG and HVG essentially capture the same
properties of the system under study. Specifically, the HVG
is a subgraph of the VG with the same vertex set, but only
a subset of edges contained in the VG. To put it differently,
the VG is invariant with respect to the superposition of lin-
ear trends whereas the HVG is not.

2.2. Standard and time-directed vertex properties

Complex networks can be quantitatively characterized
and possibly classified by various properties acting on the
local (vertex- or edge-based), mesoscopic, or global net-
work scale. In this work, we will focus on two well-studied
vertex characteristics.

2.2.1. Vertex degree

The degree of a given vertex i,

ki =

N∑
j=1

Ai j, (4)

measures the number of edges incident to i. For directed
networks (which have, in contrast to the VGs studied here,
an asymmetric adjacency matrix, i.e., A , AT ), one has to
distinguish the in-degree (the number of edges entering i)
and out-degree (the number of edges leaving i):

kin
i =

N∑
j=1

A ji and kout
i =

N∑
j=1

Ai j (5)

In a recent work, Lacasa et al. [11] studied directional
HVGs defined as

A(DHVG)
i j =

j−1∏
k=i+1

Θ (xi − xk) Θ
(
x j − xk

)
Θ(t j − ti), (6)

which have directed edges for pairs of vertices (i, j) for t j >
ti only. It has been shown that there are differences between
the distributions of in- and out-degrees obtained from the
directional HVGs of nonlinear processes that can be used
for quantifying the degree of time-reversal asymmetry.

In this paper, we propose a slightly different approach
by introducing two related properties based on the standard
VG algorithm: the retarded and advanced degrees

kr
i =

∑
j<i

Ai j and ka
i =

∑
j>i

Ai j. (7)

Both characteristics can be considered as the respective in-
and out-degrees of a directional VG where all edges follow
the arrow of time. In general, we note that this approach ex-
plicitly makes use of the fact that VGs are “embedded” on
the one-dimensional time axis, such that their local struc-
ture is intrinsically interwoven with the direction of time.
We furthermore emphasize that considering VGs instead
of HVGs may eventuelly lead to a better detectability of
time-reversal asymmetries, since VGs incorporate slightly
more moderate restrictions to the graph by their construc-
tion. However, a detailed comparison of the performance
of VGs and HVGs for the considered purpose is beyond the
scope of this work.

2.2.2. Local clustering coefficient

The retarded and advanced degrees measure a rather
coarse property of the system under study, that basically
corresponds to the distance to the next observation, the
magnitude of which (corrected for possible linear trends)
exceeds that of the considered point of observation in the
past and future, respectively. Thus, it is possible that there
are subtle manifestations of time-series irreversibility that
cannot be statistically detected based on the distributions
of both measures. As a possible solution, we propose using
higher-order characteristics involving three-point relation-
ships between vertices of a VG.

One such measure is the local clustering coefficient

Ci =

∑n
j,k=1 Ai jAikA jk

ki(ki − 1)/2
, (8)

which describes the neighborhood structure of i. Specifi-
cally, it is a measure of transitivity characterizing to what
extent the linkage structure of a vertex i is transitive (i.e.,
how often Ai j = Aik = 1 also imply A jk = 1). In order to
detect possible signatures of time-reversal asymmetry, we
define in analogy to the degree the retarded and advanced
local clustering coefficients as

Cr
i =

∑
j,k<i Ai jAikA jk

kr
i (k

r
i − 1)/2

and Ca
i =

∑
j,k>i Ai jAikA jk

ka
i (ka

i − 1)/2
(9)
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We note that both properties are equivalent to the in- and
out-clustering coefficients of directed networks [12] when
applied to directional VGs.

In general, we note that there are many other vertex char-
acteristics one could study in a similar way. In this work,
we restrict our attention to the two aforementioned char-
acteristics for two reasons: First, as it has been shown re-
cently [10], vertex properties suffer from boundary effects
implying that there is a systematic bias of their distribu-
tion towards smaller values particularly for short time se-
ries. This bias is still quite moderate for degree and local
clustering coefficient, but becomes stronger for other (in
particular, path-based) network measures such as closeness
and betweenness. Second, we emphasize that the two con-
sidered characteristics are those that are most easily com-
putable and have still a rather intuitive interpretation in
terms of VGs (see [10] for a detailed discussion).

2.3. Comparison of distribution functions

As we have already stated above, we conjecture that
differences in the distributions of retarded and advanced
vertex properties are a manifestation of a statistical time-
reversal asymmetry of the investigated time series with
respect to the respective properties. There are different
ways for characterizing such differences. Lacasa et al. [11]
used the Kullback-Leibler distance between both distribu-
tion functions as a measure for the degree of time-reversal
asymmetry. In the sense of a statistical test for time-
reversal asymmetry, we alternatively propose here using
the Kolmogorov-Smirnov statistics (i.e., the maximum dif-
ference between the two cumulative distribution functions).
The main advantage of the latter approach that it allows di-
rectly giving P-values for possibly rejecting the hypothe-
sis of equal distributions. These values are universal and
distribution-free in the limit of N → ∞. Hence, we can
use them directly as P-values for testing reversibility and
do not need to construct surrogate time series as in other
reversibility tests.

In summary, the proposed strategy allows constructing
simple tests for time-reversal asymmetry of certain local
VG properties. Specifically, if we can statistically reject the
null hypothesis of equal distributions of retarded and ad-
vanced properties for a given record with sufficiently high
confidence, we can conclude that the underlying time se-
ries is irreversible, which necessarily implies the presence
of a nonlinear process (since linear processes are reversible
with respect to their statistical properties).

3. Examples

We first illustrate the potentials of the proposed method
for two simple model systems. On the one hand, we will
consider a linear-stochastic first-order autoregressive pro-
cess

xt = αxt−1 + ξt (10)

Figure 2: Distributions of retarded/advanced (A,C) degree
kr,a

i and (B,D) local clustering coefficient Cr,a
i for model

systems: (A,B) linear first-order autoregressive process and
(C,D) nonlinear Hénon map (first component). Time se-
ries of length N = 500 have been used for estimating the
probability density functions (PDF) with a kernel density
estimator. The mean (solid lines) and standard deviation
(dashed lines) of the PDFs have been computed based on
an ensemble of M = 1, 000 realizations with random initial
conditions for both model systems.

with α = 0.5 and the additive noise term ξt taken as in-
dependent realizations of a Gaussian random variable with
zero mean and unit variance. On the other hand, we con-
sider the first (x) component of the nonlinear-deterministic
Hénon map

xt = A − x2
t−1 + Byt−1, yt = xt−1 (11)

with A = 1.4 and B = 0.3. In both cases, we use ensem-
bles of realizations of the respective processes with random
initial conditions and discard the first 1,000 points of each
resulting time series to avoid possible transients.

As expected, for the linear (reversible) process, the em-
pirical distributions of retarded/advanced degree and local
clustering coefficient collapse onto each other (Fig. 2A,B).
Consequently, the null hypothesis of reversibility is never
rejected by the test based on degree (Fig. 2A) and only
rarely rejected by the clustering-based test well below the
expected false rejection rate of 5% (Fig. 2B). In contrast,
for the irreversible Hénon map the distributions of retarded
and advanced VG measures appear distinct already by vi-
sual inspection (Fig. 2C,D). In accordance with this obser-
vation, the null hypothesis of reversibility is nearly always
(Fig. 2C) or always (Fig. 2D) rejected.

Motivated by these results for simple model systems, we
finally apply our method to detecting signatures of time-
irreversibility in real-world paleoclimate data. Note again
that such data are typically characterized by non-uniform
sampling, which is a challenge for most methods of time
series analysis. In turn, the use of VG-based methods does
not explicitly require uniform sampling of observations,
making this method a promising tool for the explorative
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analysis of such data. As a particular example, we consider
the well-studied δ18O isotope record from the GISP2 ice
core from Greenland [13], which can be interpreted as a
proxy for paleo-temperatures and covers the present inter-
glacial period (Holocene) as well as the vast part of the last
glacial. Since warm and cold periods likely display differ-
ent dynamical patterns, we apply our method separately to
both respective parts of the record, i.e., N = 824 data points
for the Holocene (11.65 kyr before present (BP) until to-
day) and N = 566 data points for the last glacial (110.98
– 11.65 kyr BP, note the different sampling rates in both
periods due to the compactification of older ice deposits).

As a result, we find that the null hypothesis of reversibil-
ity can be rejected for the last glacial with high confidence
using both degrees and local clustering coefficients as dis-
criminators. In order to further support this result, we
applied an leave-K-out cross-validation procedure by ran-
domly removing 20% of the data from the record and re-
peating the computations afterwards. It turned out that that
for the thus bootstrapped data, the null hypothesis could be
rejected in 93 (degree) and 82 (local clustering coefficient)
out of 100 realizations. The apparent irreversibility of the
temperature variability during the glacial is most probably
due to the marked presence of multiple Dansgaard-Øschger
events that are characterized by a fast warming followed by
a slow cooling. In turn, such asymmetric events (indicating
the presence of a strongly nonlinear dynamics) are largely
missing during the Holocene. As a consequence, the null
hypothesis of time-reversibility could not be rejected by our
tests for this time interval (for all realizations when doing
cross-validation).

4. Conclusions

We have proposed a new test for reversibility of scalar
time series based on visibility graphs. Our approach
has two important advantages in comparison with exist-
ing tests: it can be directly applied to time series with
non-uniform sampling (such as paleoclimate records) and
does not require the construction of surrogate data, but di-
rectly supplies a P-value for the associated null hypothesis.
Time-directed versions of the degree and local clustering
coefficient have been shown to serve as powerful discrimi-
nators between reversible linear, and irreversible nonlinear
dynamics. Our results suggest potentials for future applica-
tions to many fields of research. Methodological questions
that will be studied in future work include a comparison
of the performance of our tests based on standard as well
as horizontal visibility graphs, the use of different network
characteristics, and a detailed study of the possible impact
of sampling on the outcomes of our method.
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