
IEICE Proceeding Series 

 

 

 

 

Fast Multiprecision Algorithm like Quad-Double Arithmetic 

 

 

Naoya Yamanaka, Shin'ichi Oishi 

 

 

Vol. 2 pp. 433-436 

Publication Date: 2014/03/18 

Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers 

Downloaded from www.proceeding.ieice.org 



Fast Multiprecision Algorithm like Quad-Double Arithmetic

Naoya Yamanaka† and Shin’ichi Oishi‡

†Research Institute for Science and Engineering, Waseda University
3-4-1 Okubo Shinjuku, Tokyo, 169-8555 Japan

‡Faculty of Science and Engineering, Waseda University
3-4-1 Okubo Shinjuku, Tokyo, 169-8555 Japan

Email: naoya yamanaka@suou.waseda.jp, oishi@waseda.jp

Abstract—A quad-double number is an unevaluated
sum of four double precision numbers, capable of repre-
senting at least 212 bits of significand. Hida et. al. have
developed the well-known software for quad-double arith-
metic called “QD”. Similarly to their algorithms, in this pa-
per, fast multiprecision algorithms are proposed. The pro-
posed algorithms in this paper are designed to achieve the
results as if computed in almost 4-fold working precision.
Numerical results are presented showing the performance
of the proposed multiprecision algorithms.

1. Introduction

In a numerical calculation sometimes we need higher
than double precision floating point arithmetic to allow us
to be confident a result. One alternative is to rewrite the
program to use a software package implementing arbitrary-
precision extended floating-point arithmetic such as MPFR
[1] or exflib [2], and try to choose a suitable precision.
There are possibilities intermediate between the largest
hardware floating point format and the general arbitrary
precision software which combine a considerable amount
of extra precision with a relatively speaking modest fac-
tor loss in speed. An alternative approach is to store num-
bers in a multiple-component format, where a number is
expressed as unevaluated sums of ordinary floating-point
words, each with its own significand and exponent like
ARPREC [3]. The multiple-digit approach can represent
a much larger range of numbers, whereas the multiple-
component approach has the advantage in speed.

We note that many applications would get full benefit
from using merely a small multiple the working precision
without the need for arbitrary precision. Bailey [4] have
developed algorithms for double-double arithmetic1. A
double-double number is an unevaluated sum of two dou-
ble precision numbers, capable of representing at least 106
bits of significand. Similarly, Hida et.al. have implemented
a quad-double arithmetic [5]: a quad-double number is an
unevaluated sum of four double precision numbers, capable
of representing at least 212 bits of significand. These algo-
rithms can be made faster than some softwares for arbitrary
precision.

1K. Briggs also have proposed the same idea.

In this paper we will propose an efficient format and de-
scribe fast algorithms for basic operations similar to quad-
double arithmetic. Proposed format is also an unevalu-
ated sum of four double precision numbers, but it is ca-
pable of representing at least 203 bits of significand (50 bit
×3+53 bit). Hence, it is slightly less accuracy than a quad-
double arithmetic, however, there is leeway to treat “carry
bits” on IEEE 754 double precision numbers. As a result,
presented algorithms for the format is faster than that for
quad-double arithmetic. For example, proposed multipli-
cation algorithm is about 2-times faster than that of quad-
double arithmetic. By numerical experiments it is shown
that the proposed algorithms are efficient compared with
Hida et.al’s quad-double, MPFR and exflib.

2. Preliminary

2.1. Notation

We assume that neither overflow nor underflow occur.
The set of floating-point numbers which have m-bit man-
tissa is denoted by Fm. Simply, F denotes the set of
floating-point numbers according to the IEEE 754 arith-
metic standard. The relative rounding error unit, the dis-
tance from 1.0 to the next larger floating-point number
in Fm, is denoted by um. For IEEE754 double precision
u = 2−53. We denote by fl (·) the result of a floating-
point operations in rounding to nearest corresponding to
the IEEE 754 arithmetic standard.

Let us denote ufp (“unit in the first place”) by

0 , r ∈ R ⇒ ufp (r) := 2blog2 |r|c, (1)

where we set ufp (0) := 0 [6]. Furthermore, we define the
floating-point predecessor and successor of a real number r
by

predm (r) := max { f ∈ Fm | f < r } (2)
succm (r) := min { f ∈ Fm | r < f } . (3)

A floating-point number f is called a (m-bit) faithful round-
ing of a real number r if there is no other floating-point
number between f and r [6]. It follows that f = r in case
r ∈ Fm.

- 433 -

2013 International Symposium on Nonlinear Theory and its Applications
NOLTA2013, Santa Fe, USA, September 8-11, 2013



Definition 1
A floating-point number f ∈ Fm is called a faithful round-
ing of a real number r ∈ R if predm ( f ) < r < succm ( f ).
We denote this by f ∈ faithfulm (r). For r ∈ Fm this implies
f = r.

Rump et.al. have extended Definition 1 to a sequence
a0, · · · , ak−1 [7].

Definition 2
A sequence a0, · · · , ak−1 ∈ Fm is called a (m-bit and k-fold)
faithful rounding of s ∈ R if

ai ∈ faithfulm

s − i−1∑
v=0

av

 for 0 5 i 5 k − 1. (4)

Furthermore, for the integer n, the numbers a0, · · · , ak−2 ∈
Fm and ak−1 ∈ Fn, a sequence a0, · · · , ak−1 is also called a
(m-bit, n-bit and k-fold) faithful rounding of s if

ai ∈ faithfulm

s − i−1∑
v=0

av

 for 0 5 i 5 k − 2, (5)

ak−1 ∈ faithfuln

s − k−2∑
v=0

av

 . (6)

2.2. Error Free Transformations

It is known that the error of every floating-point opera-
tion is itself a floating-point number:

x = fl (a ◦ b) =⇒ x + y = a ◦ b with y ∈ F (7)

for a, b ∈ F and ◦ ∈ {+,−, ·}. Remarkably, the error y can be
calculated using only basic floating-point operations. First,
we introduce the addition algorithm TwoSum. Knuth [8]
presented the following algorithm which transforms a pair
(x, y) with x, y ∈ F into a new pair (a, b) with a, b ∈ F
satisfying

x + y = a + b with a = fl (x + y) , (8)
|b| ≤ u |a| . (9)

Algorithm 1 Error-free transformation of the sum of two
floating-point numbers.

function [a, b] = TwoSum (x, y)
a = fl (x + y)
c = fl (a − x)
b = fl ((x − (a − c)) + (y − c))

end

Next, we proceed to the dot product. The multiplication
routine needs to split the input arguments into two parts.
The following algorithm on Algorithm 2 by Dekker [9]
splits a floating point number x ∈ F into two parts xh, xt ∈

Algorithm 2 Error-free transformation of the split a
floating-point number into two floating-point numbers.

function [xh, xt] = Split(x)
c = fl

(
(227 + 1) · x

)
xh = fl (c − (c − x))
xt = fl (x − xh)

end

F, where both parts have at most 26 nonzero bits, such that
x = xh + xt.

There is another splitting algorithm called “Ex-
tractScalar”. This algorithm is to extract high order part of
a floating point numbers. A floating-point number is split
relative to σ, a fixed power of 2. The higher and the lower
part of the splitting may have between 0 and m significant
bits, depending on σ.

Algorithm 3 Error-free transformation extracting high or-
der part.

function [q, p′] = ExtractScalar(σ, p)
q = fl ((σ + p) − σ)
p′ = fl (p − q)

end

There, a 53-bit floating-point number is split into two
parts relative to its exponent, and using a sign bit both the
high and the low part have at most 26 significant bits in the
mantissa. In ExtractScalar a floating-point number is split
relative to σ, a fixed power of 2. The higher and the lower
part of the splitting may have between 0 and 53 significant
bits, depending on σ.

Using Split, the following multiplication routine by
G.W. Veltkamp (see [9]) can be formulated.

Algorithm 4 Error-free transformation of the product of
two floating-point numbers.

function [a, b] = TwoProduct (x, y)
a = fl (x · y)
[x1, x2] = Split(x)
[y1, y2] = Split(y)
b = fl (x2 · y2 − (((a − x1 · y1) − x2 · y1) − x1 · y2))

end

3. Proposed Method

3.1. Format

A number of proposed format is an unevaluated sum of
three floating-point numbers in F50 and one floating point
number in F. For a0, a1, a2 ∈ F50 and a3 ∈ F, the number
(a0, a1, a2, a3) represents the exact sum a = a0+a1+a2+a3.

- 434 -



Then we require that the quadruple (a0, a1, a2, a3) to satisfy

a0 ∈ faithful50 (a) (10)
a1 ∈ faithful100 (a) − a0 (11)
a2 ∈ faithful150 (a) − a0 − a1 (12)

|a3| < 2u3
50 · ufp (a0) (13)

Note that a0 is a 50-bit faithful rounding of a.

Lemma 1
Let a = (a1, a2, a3, a4) be a number of proposed format,
|ak | < 2uk

50ufp (a0).

In Hida et.al.’s paper, they have proposed “a quad-
double number” by an unevaluated sum of four floating-
point numbers in F. Proposed format in this paper is sim-
ilar to Hida et.al.’s algorithm, but there are several differ-
ences between them. One, the accuracy of proposed format
is slightly less accuracy than quad-double arithmetic: the
number of mantissa of the proposed format is at least 203
bits, on the other hand, that of quad-double arithmetic is
at least 212 bits. Second, the way to store numbers is dif-
ferent. Third, quad-double arithmetic is unique for a real
number r, but the proposed format has many way to repre-
sent the number.

Most of the algorithms described in this paper produce
an expansion that is not of canonical form - often having
overlapping bits. Therefore, we present a renormalized al-
gorithm to proposed format satisfying (10) – (13) .

Algorithm 5 A renormalized algorithm
function [a0, a1, a2, a3] = Renormalize(x0, x1, x2, x3)

[s0, t0] = TwoSum (x0, x1)
[a0, b0] = ExtractScalar

(
253−50 · ufp (s0) , s0

)
[s1, t1] = TwoSum (fl (b0 + t0) , x2)
[a1, b1] = ExtractScalar

(
253−100 · ufp (a0) , s1

)
[s2, t2] = TwoSum (fl (b1 + t1) , x3)
[a2, b2] = ExtractScalar

(
253−150 · ufp (a0) , s2

)
a3 = fl (b2 + t2)

end

We present a following theorem.

Theorem 1
We define F (2m : 2n) by a set of all floating point numbers
consisted by bits from 2n to 2m (m > n). If a sequence
x0, · · · , x3 satisfying

x0 ∈ F (14)

x1 ∈ F
(
2−47ufp (x0) : 2−99ufp (x0)

)
(15)

x2 ∈ F
(
2−97ufp (x0) : 2−149ufp (x0)

)
(16)

x3 ∈ F
(
2−147ufp (x0) : 2−1022

)
∩ F (17)

is given. Then the result sequence a0, a1, a2, a3 of Algo-
rithm 5 satisfies the format (10) – (13), and the maximum
error of Algorithm 5 is

|x0 + x1 + x2 + x3 − (a0 + a1 + a2 + a3)| 5 2 · 2−203 · ufp (a0) .
(18)

3.2. Multiplication

Multiplication is basically done in a straightforward way,
multiplying term by term and accumulating. Note that un-
like addition, there are no possibilities of massive cancella-
tion in multiplication.

First, to achieve the proposed form, we need to modify
the multiplication algorithm TwoProduct for m-bit floating
point numbers. For a pair of m-bit floating point numbers
(x, y) with x, y ∈ Fm into a new pair (a, b) with a, b ∈ Fm

satisfying

x × y = a + b, |b| ≤ um |a| . (19)

Algorithm 6 m-bit TwoProduct. (27 < m < 53)
function [a, b] = TwoProductm(x, y)

z = fl (x · y)
[x1, x2] = Split(x)
[y1, y2] = Split(y)
w = fl (x2 · y2 − (((z − x1 · y1) − x2 · y1) − x1 · y2))
[a, v] = ExtractScalar(253−m · ufp (z) , z)
b = fl (w + v)

end

Theorem 2
For a number x, y ∈ Fm, the result of Algorithm 6 satisfies
(19).

Let x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3) be two
numbers of the proposed form. Assume (without loss of
generality) that a and b are order 1.

x × y ≈ x0y0 O(1) term
+ x0y1 + x1y0 O(u50) terms
+ x0y2 + x1y1 + x2y0 O(u2

50) terms
+ x0y3 + x1y2 + x2y1 + x3y0 O(u3

50) terms
(+ x1y3 + x2y2 + x3y1) O(u4

50) terms

For i + j < 3, let [pi j, qi j] = TwoProduct (xi, y j). Then
pi j = O(ui+ j

50 ) and qi j = O(ui+ j+1
50 ). Now there are one term

(p00) of order O(1), three (p01, p10, q00) of order O(u50),
five (p02, p11, p20, q01, q10) of order O(u2

50), seven of order
O(u3

50).
In Hida et.al.’s paper, there are three different summa-

tion boxes. They have called Three-Sum, Six-Three-Sum,
Nine-Two-Sum. In proposed multiplication algorithm, in
order to reduce the number of floating point operations, we

- 435 -



don’t use these summation boxes. Instead of these, we’ve
tried to using normal double precision arithmetic summa-
tion. In addition, in order to construct a fast algorithm in
this paper, our algorithm don’t compute the O(u4

50) terms;
they can affect the first 203 bits only by carries during ac-
cumulation. In this case, we can compute the O(u3

50) terms
using normal double precision arithmetic, thereby speeding
up multiplication considerably.

Algorithm 7 a multiplication algorithm
function [a0, a1, a2, a3] = multiplication(x0, x1, x2, x3,

y0, y1, y2, y3)
[z0, b0] = TwoProduct50 (x0, y0)
[b1, c0] = TwoProduct50 (x0, y1)
[b2, c1] = TwoProduct50 (x1, y0)
z1 = fl (b0 + b1 + b2)
[c2, d0] = TwoProduct50 (x0, y2)
[c3, d1] = TwoProduct50 (x1, y1)
[c4, d2] = TwoProduct50 (x2, y0)
z2 = fl (c0 + c1 + c2 + c3 + c4)
z3 = fl (d0 + d1 + d2 + x0 · y3 + x1 · y2 + x2 · y1 + x3 · y0)
[a0, a1, a2, a3] = Renormalize (z0, z1, z2, z3)

end

Theorem 3
The upper bound of the error of Algorithm 7 is 274 ·2−203 ·
ufp (a0).

4. Numerical results

In this section we present timing of proposed algorithms.
We tested in the following environment: Intel Core I7,
1.8GHz, Mac OS X 10.8.2, Memory 32GB. All proposed
algorithms were tested in C++. All floating-point oper-
ations are done in IEEE standard 754 double precision.
We use a compiler g++ 4.7.2 with -O2 option as usual.
Moreover, to avoid overdoing the compiler optimizations
for TwoSum and TwoProduct , an extra compile option
-msse2 -mfpmath=sse has to be used.

The results for 10 million calls of each algorithms are
summarized in Table 1:

Table 1: Measured computing time (sec) and time ratio for
10 million calls of each algorithms

+/− × ÷
Proposed 0.98 (1) 2.00 (1) 8.76 (1)
QD [5] 0.95 (0.9) 3.81 (1.9) 15.3 (1.7)

exflib [2] 2.84 (2.8) 4.75 (2.3) 16.3 (1.8)
MPFR [1] 23.0 (23.) 26.27 (13.) 36.0 (4.1)

5. Concluding remarks

We presented the algorithms and performance of basic
operations on the proposed format. Proposed format is an
unevaluated sum of four double precision numbers similar
to quad-double arithmetic, but it is capable of representing
at least 203 bits of significand (50 bit ×3 + 53 bit). Hence,
it is slightly less accuracy than a quad-double arithmetic,
however, presented algorithms for the format is faster than
that for quad-double arithmetic. By numerical experiments
it is shown that the algorithms are faster compared to the
computation time of the existing algorithm.

Acknowledgements

This paper is a part of the outcome of research performed
under a Waseda University Grant for Special Research
Projects (Project number: 2012A-508) and this work was
supported by JSPS KAKENHI Grant Number 24700015.

References

[1] The GNU MPFR Library: http://www.mpfr.org/

[2] exflib - extend precision floating-point arithmetic li-
brary: http://www-an.acs.i.kyoto-u.ac.jp/˜
fujiwara/exflib/

[3] D. H. Bailey, Y. Hida, X. S. Li and B. Thomp-
son. “ARPREC: an arbitrary precision computational
package”, Lawrence Berkeley National Laboratory.
Berkeley. CA94720. 2002.

[4] D. H. Bailey. “A fortran-90 double-double library”,
Available at http://www.nersc.gov/˜dhbailey/
mpdist/mpdist.html

[5] Y. Hida, X. S. Li and D. H. Bailey. “Quad-Double
Arithmetic: Algorithms, Implementation, and Appli-
cation” October 30, 2000 Report LBL-46996.

[6] S.M. Rump, T. Ogita, and S. Oishi: “ Accurate
floating-point summation part I: Faithful rounding”.
SIAM J. Sci. Comput., 31(1):189–224, 2008.

[7] S.M. Rump, T. Ogita, and S. Oishi: “Accurate
floating-point summation part II: Sign, K-fold faith-
ful and rounding to nearest”. Siam J. Sci. Comput.,
31(2):1269–1302, 2008.

[8] D. E. Knuth: The Art of Computer Programming:
Seminumerical Algorithms, vol. 2, Addison-Wesley,
Reading, Massachusetts, 1969.

[9] T. J. Dekker: A floating-point technique for extending
the available precision, Numer. Math., 18 (1971), pp.
224–242.

- 436 -




