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Abstract—It has been known for a long time that the
perceived pitch of a complex harmonic sound changes if
the partials of the sound are shifted in frequency by a fixed
amount. Based on simple nonlinear modeling, approximate
rules for the shift of the pitch shift could be given (first
pitch shift law). In psychoacoustic experiments, however,
clear deviations from these predictions were observed (sec-
ond pitch-shift effects). This raised the question of whether
these deviations are due to the biophysics of the nonlinear
hearing sensor, the cochlea, or an artifact generated higher
up in the auditory pathway. In this article, we demonstrate
that the second pitch-shift is generated in the cochlea, and
that combination-tone generation, low-pass filtering and a
feed-forward coupling are the key factors responsible for
the phenomenon. In particular, we find that the scaling
laws of Hopf cochlea combination tones explain the classi-
cal, to date poorly explained psychoacoustical data of G.F.
Smoorenburg (1970).

1. Introduction

Pitch is a central and yet most intriguing trait of human
hearing. For pure tones, pitch coincides with the physical
frequency of the sound. This changes if a tone contains sev-
eral partial sounds. Since the discovery of these so-called
complex sounds, the mechanisms of the perception of their
pitch has been under dispute and many aspects have re-
mained unclear, although quite successful models of pitch
perception have been developed ([1] for a review). Given a
complex sound containing Nsubsequent harmonics

k f0, (k + 1) f0, (k + 2) f0, ..., (k + N − 1) f0 (1)

of some fundamental frequencyf0 (i.e. k > 1), for k not
too high and ifN ≥ 2, the perceived pitchfp is the fun-
damentalf0. In the case ofN = 2 or N = 3, the residue
frequency coincides with themodulation frequency of the
signal. For a number of psychoacoustic experiments deal-
ing with more complex sounds, this interpretation, surpris-
ingly, falls short: If all higher partials (k > 1) are shifted
by a fixed amountδ f (keeping the modulation frequencyf0
fixed), a shift of the perceived pitchfp is observed [2, 3, 4].
Simple models [2, 3] of the pitch propose for the shift the
rule

fp = f0 +
δ f
k′
, (2)

wherek′ is the ’center’ of the set{k, k+1, k+2, . . .} (for N =
3: k′ = k+1), or, for largerN, one of the lower frequencies
present. A corresponding result has been evidenced when
a neuronal threshold oscillator was stimulated by a signal
A(sin f1 t+sin f2 t+. . .+sin fn t)+ξ(t), with frequency com-
ponents chosen as in Eq. (1) and Gaussian white noiseξ(t).
The experiment yields interspike distributions centered at
frequenciesfp as given by Eq. (2), withk′ = k + (N − 1)/2
[5]. The guiding idea behind this experiment was that the
main resonance should be the dominant periodicity of the
subsequent maxima in the stimulus waveform. This paral-
lels the temporal pitch perception paradigm (c.f. [6]), in
which fp is given by the most prominent peak in the auto-
correlation or in the auditory nerve interspike interval his-
tograms [7]. For two-tone stimuli (N = 2), a pitch-shift
of δ f /(k + 1/2) is predicted (this result also emerges from
a pattern-matching perspective [6]). Subsequent psychoa-
coustic studies (most prominently Smoorenburg’s two-tone
pitch-shift experiments) evidenced, however, that this rule
[6] only holds for a restricted family of complex sounds. It
has been proposed that combination tones (CT, also known
as ’distortion products’) are at the origin of the problem
[8, 6]. CT emergence is a well-known phenomenon from
the cochlear nonlinearity. Given a sequence of harmonics

k f0, ..., (k + N − 1) f0,

a cubic nonlinearity re-introduces all the missing partials

(k − 1) f0, (k − 2) f0, ... and (k + N) f0, (k + N + 1) f0, ...,

where the corresponding partials above the stimulus fre-
quencies are generally not perceivable. The lower partials
then shift the “center of gravity” of the stimulus towards
lower frequencies, which may substantially increase the
slope of the linesfp(δ f ) in Eq. (2).

Experiments with a nonlinear biophysical cochlear
model have corroborated the role of CT as the origin of sec-
ond pitch-shift effects [9]. However, the exact match of the
deviations from de Boer’s rule based on a detailed cochlear
model cooperating all the claimed generating principles
and available biological (i.e. mostly psychoacoustic) data
is still missing. In the present work, we generate CT from
a biophysically realistic model of the cochlea and repro-
duce all salient findings reported in Ref. [10], to demon-
strate that our model fully complies with presently accepted
biophysical evidence. In the second part of our work,
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we demonstrate that under very mild cochlear read-out as-
sumptions, this automatically leads to the second pitch-
shift effect as reported by Smoorenburg [6].

2. CT - generation

An underlying problem with the application of Eq. (2)
to complex sounds is that it is based on the inherent as-
sumption of equal amplitudes of all partials. However,
along the cochlear duct, CT of unequal amplitude decay
rates are generated, due to the nonlinear processes present
in the cochlea. CT were long thought to be relevant only
in the context of high sound levels (hence their alterna-
tive naming ’distortion products’), assuming that the hear-
ing system would be essentially linear at low to moderate
sound levels. Although such a linearity at low sound lev-
els is still sometimes incorporated in cochlear modeling
(e.g. [11]), this view was challenged quite early by con-
trary psychoacoustic evidence [12, 6] demonstrating that
CT are already perceived at relatively low sound levels.
CT are thus not a high-level input artifact, but are ubiqui-
tously present in the hearing system. A decade ago, it was
proposed that a relaxation oscillator close to a bifurcation
could account for all salient nonlinear properties of hear-
ing [13, 14]. Based on these insights, we developed and
realized a biophysically detailed Hopf cochlea in software
and hardware [15, 16, 17], which reproduces the biological
evidence extremely well (c.f., e.g., [9], Supplemental Mate-
rial). In this model, the cochlea is discretized into sections,
where each section hosts an amplification process that is
the result of a stimulated Hopf process

ż = (µ + i)ωchz− ωch|z|2z− ωchF(t), z ∈ C, (3)

whereF(t) is the stimulation signal andµmeasures the sys-
tems’ distance to its Hopf bifurcation point.

In order to show that our model of the cochlea is firmly
based on biophysical reality, we will first explicitly re-
produce the biophysical findings related to CT as col-
lected in Ref. [10]. To this end, we consider a signal
composed of the harmonics of given angular frequencies
kω0, ..., (k+N−1)ω0 and amplitudesFk, ..., Fk+N−1 (some
amplitudes possibly zero). Since all CT are multiples of
ω0, we expand the response of a single Hopf-oscillator in a
Fourier seriesz(t) =

∑
j a jeı jω0t. For a frequencyωl = lω0

we obtain

(i(ωl − ωch) − µωch)al + i.t. = −ωchFl, (4)

wherei.t. denotes cubic terms of three interacting modes

∝ ωch ak′ ak′′ a∗k′′′ ,

with k′ + k′′ − k′′′ = l. The first term on the l.h.s. of Eq.
(4) is linear in al and thus becomes dominant far away
from resonance and bifurcation. For a single-frequency
forcing Fk of low amplitude, at resonance and close to

bifurcation, a single self-interaction term|ak |
2ak remains

and the responsez ∝ F1/3 emerges. In the presence of a
second stimulusFk+1, the response with respect toFk is
suppressed, due to an interaction term 2ωchak |ak+1|

2 that is
linear inak. A CT at frequencyωk−1 is then generated, via
the interaction termwcha2

ka∗k+1, the 2f1 − f2-CT. Further
cubic CT are generated at frequenciesωl, l < k − 1, with
amplitudes decreasing exponentially. (c.f. Fig. 1, regionof
exponential scaling).
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Figure 1: Basilar membrane response spectrograms for
two-tone stimulation with different amplitudes (frequen-
cies f2/ f1 = 1.05 and 2f2 − f1 = fch). Left: Hopf-cochlea
model, 6th section (fch = 5656 Hz). Right: Biological data
[10] ( fch = 7500 Hz).

Exponential decays of CT levels were observed in psy-
choacoustic experiments some decades ago [12]. More re-
cently, direct experimental observation of two-tone CT on
biological inner ear basilar membranes became accessible
by laser interferometry. In these experiments, for a situa-
tion wheref2/ f1 = 1.05 andfch = 2 f1− f2 and 30 to 80 dB
SPL [10], exponentially decaying CT amplitudes were con-
firmed. From our device, we obtain an excellent agreement
with the biological data (Fig. 1).

For high-level forcing (50-80 dB), CT amplitudes de-
cay around 5− 5.5 dB/ f0, with higher slopes for lower
sound levels. Here, we find a discrepancy between biology
and the direct analytical calculations or numerical integra-
tion from Eq. (3) that yield stronger decays at all sound
levels, even at bifurcation. Single Hopf elements (which
is what we so far dealt with) substantially underestimate
CT strength. This is because in biology, CT of frequen-
cies lower than stimulus frequencies propagate down the
cochlea until the corresponding waves are finally amplified
and stopped where their frequency matches the characteris-
tic frequencyfch [12]. Cochlea models without a propaga-
tion medium do not account for this mechanism and there-
fore underestimate CT strength.
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Figure 2: Smoorenburg’s pitch-shift experiments: Two-frequency stimulationf2 = f1 + 200 Hz. Psychoacoustic data
(partial sound levels each 40 dB SPL, red stars [6]) and simulation (Hopf cochlea, different sections, partial tones each
-74 dB, black circles). Solid lines: Predictions by Eq. (2) for k′ = k, k′ = k + 1/2 andk′ = k + 1, respectively.

3. Pitch fundaments

To corroborate the arguments made by model data, we
use our Hopf cochlea that implements a chain of feed-
forward coupled Hopf oscillators, including fluid internal
friction by means of low-pass filtering. This model has
been shown to reproduce biophysical evidence extremely
well [15, 16, 17], and it will also do this in the present con-
text. For all results presented, we used a software model
representation composed of 20 sections with characteristic
frequencies covering the range from 14.08 to 0.44 kHz (5
octaves), although equivalent hardware realizations exist.
For the first five sections, the bifurcation parametersµ are
set to−0.1, and decrease with−0.025/section afterwards.
This leads to biologically plausible amplification and tun-
ing curves at more apical sections. As a test, we ensure that
the amplification of generated CT by the following sections
essentially preserves the exponential scaling far from res-
onance, while the low-pass filtering now results in larger
slopes of CT levels for frequencies above the stimulus fre-
quencies. The results obtained indeed fully coincide with
the biological observations (Fig. 1). The minor mismatch
of the relative responses atf1 and f2 is just the result of the
cochlea’s discretization into sections.

4. Pitch extraction and second pitch-shift

Obviously, the perceived pitch of a general spectrum
as in Fig. 1 cannot be predicted directly from Eq. (2),
since unequal weights of the partial tones fail to exhibit a
sharply definedk′. As a consequence, we have resorted to
the autocorrelation picture, where pitch is defined in terms
of the most prominent peak in the autocorrelation-function
(ACF). Smoorenburg’s pitch-shift data for two-tone exper-

iments are compared in Fig. 2 to our Hopf-Cochlea data,
obtained from an input of the formF1e2πi f1t +F2e2πi( f1+200)t

and measuringfp at a specific cochlea section by comput-
ing the ACF. Two key parameters determine the amount
of pitch-shift observed: whereas the forcing amplitudes of
the stimulus determine the exponent in the decay of CT
via the responsesa1 (quadratic) anda2 (linear), the choice
of the read-off cochlea section governs the low-pass fil-
tering and the overall-amplification of the lower CT. For
Fig. 2, a sound level of both partials of -74 dB was chosen,
which corresponds to the partial levels of 40 dB SPL used
in Smoorenburg’s experiments (see scale-correspondence
in Fig. 1).

5. Conclusion

The quest for exactly how pitch should be defined and
where in the cochlea pitch is exactly located and to be ex-
tracted has long been a matter of debate [18]. Whereas
it was already suggested by Goldstein [19] that CT could
quantitatively account for Smoorenburg’s measured pitch-
shift effects, here we provide for the first time the reproduc-
tion and a quantitative explanation of the second pitch-shift
effects on the basis of a biomorphic cochlea model. We
find that the key factors for the striking correspondence be-
tween our modeling results and the biological data are the
correct scaling of CT, from the feed-forward coupling and
associated low-pass filtering implemented in our cochlea.
Goldstein proposed an abstract spectrum-based pitch esti-
mator [19], where the super-threshold frequencies across
the channels would have to be summed, omitting frequen-
cies from 2000 Hz upwards because of the limited fre-
quency resolution of the auditory system. We would also be
able to reproduce the pitch-shift results in this way. With
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the concept of a local waveform-based pitch [9] that we
have used for our study, it is, however, not the limited fre-
quency resolution, but the low-pass filtering that naturally
filters out the highest frequencies, that is essential for the
correct second pitch-shifts. We find an accurate reproduc-
tion of Smoorenburg’s psychoacoustic data for a variable
extraction region, shifting monotonically with the primary
frequencies. As an advantage of our interpretation, the spe-
cific location may be either automatically determined (e.g.
by the lowest CT) or, alternatively, guided by attention.
While the present work fully establishes the perceived sec-
ond pitch-shift on the basis of biophysical insight on the
level of the cochlea, for an explanation of psychoacoustic
pitch perception from physics, still the gap from contin-
uous cochlear dynamics to the discrete world of auditory
nerve spikes needs to be crossed. By the addition of inner
hair and auditory nerve cell to the cochlea, we recently suc-
ceeded in modeling a full peripheral auditory system based
on basic biophysical principles [20]. Using this approach,
we were able to demonstrate the intriguing fact that despite
the many transductions and transformations the signal un-
dergoes from the continuous world of basilar membrane
dynamics in the cochlea to the discrete world of neuronal
spiking at the end of the auditory nerve, the information
available at the level of the cochlea is transmitted without
apparent loss. In particular, the auditory system seems to
take extreme care to transmit the perceived pitch (includ-
ing the second pitch-shift) across the different stages by
exploiting stochastic resonance at the synaptic interfacebe-
tween inner hair and auditory nerve cells [20]. With these
two steps, human psychoacoustic pitch perception can be
fully explained by cochlear biophysics. In this sense, the
original dream of Seebeck, Ohm and Helmholtz has finally
come true.
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tory sensitivity provided by self-tuned critical oscil-
lations of hair cells,”Proc. Natl. Acad. Sci. U.S.A.,
vol. 97, no. 7, pp. 3183–3188, 2000.

[15] A. Kern and R. Stoop, “Essential role of couplings
between hearing nonlinearities,”Phys. Rev. Lett.,
vol. 91, p. 128101, Sep 2003.

[16] R. Stoop and A. Kern, “Two-tone suppression and
combination tone generation as computations per-
formed by the hopf cochlea,”Phys. Rev. Lett., vol. 93,
p. 268103, Dec 2004.

[17] S. Martignoli, J.-J. van der Vyver, A. Kern, Y. Uwate,
and R. Stoop, “Analog electronic cochlea with mam-
malian hearing characteristics,”Appl. Phys. Lett.,
vol. 91, pp. 064108 –064108–3, aug 2007.

[18] R. Plomp, “Pitch of complex tones,”J. Acoust. Soc.
Am., vol. 41, no. 6, pp. 1526–1533, 1967.

[19] J. L. Goldstein, “An optimum processor theory for the
central formation of the pitch of complex tones,”J.
Acoust. Soc. Am., vol. 54, no. 6, pp. 1496–1516, 1973.

[20] S. Martignoli, F. Gomez, and R. Stoop submitted
(2013).

- 432 -




