
IEICE Proceeding Series

Maximum likelihood estimation of quantized Gaussian autoregressive
processes with Particle filters with resampling

András Horváth, Miklós Rásonyi

Vol. 1 pp. 427-430
Publication Date: 2014/03/17
Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers

Downloaded from www.proceeding.ieice.org

Maximum likelihood estimation of quantized Gaussian autoregressive
processes with Particle filters with resampling

András Horváth† and Miklós Rásonyi‡

†Faculty of Information Technology, Pázmány Péter Catholic University
1444 Pf. 278, Budapest, Hungary

‡School of Mathematics, University of Edinburgh
James Clerk Maxwell Building, EH9 3JZ, Edinburgh, UK

Email: horvath.andras@itk.ppke.hu, Miklos.Rasonyi@ed.ac.uk

Abstract—In this paper we propose a method for the
calculation of the maximum likelihood estimator for the
autoregression coefficient of a stable quantized Gaussian
autoregressive, AR(1) process. Our method uses particle
filters with resampling and suits ideally on manycore archi-
tectures and can be implemented in a parallel way, this way
yields fast processing speed. The extension to multidimen-
sional autoregressivemoving-average (ARMA) systems is
straightforward.

1. Introduction

Quantization is one of the most communly used nonlin-
ear operation in communication [4]. The parameter esti-
mation of quantized stochastic processes is used widely in
practice. However this is a hard problem of mathematical
statistics, the problem in theory can be solved [3].These
theoretical solutions are computationaly expensive and in
real-life problem e.g. speech recognition (speaker identi-
fication), only methods with relatively fast (real-time) pro-
cessing speed can be applied. In this paper we investigate
a scalable, paralellizable method that can estimate the pa-
rameter of an AR(1) process 10 times faster, than pervious
methods.

We have selected the Gaussian ARMA processes, be-
cause there versatility makes them a natural class for in-
vestigating the effect of rounding off. An extension of our
example to multidimensional (ARMA) systems is possible
but it would lead to further complications which we prefer
to avoid in the scope of this article.

2. Problem statement

We consider a stable Gaussian AR(1) process given by

Xn = α∗Xn−1 + εn, n ≥ 0,

where εn are i.i.d. random variables with law N(0, σ2
∗) and

X−1 ∈ R is a deterministic initial value. We assume that
X−1, σ∗ > 0 are known. The autoregression parameter α∗ is
unknown, but it lies in the interval of admissible parameters
[α, α] where −1 < α < α < 1.

Only the rounded-off, quantized values Yn = q(Xn), n ≥
0 are observed, where the quantizer function q is defined
by

q(x) = k, for x ∈ [k − 1/2, k + 1/2), k ∈ Z.
Our aim is to calculate the maximum likelihood (ML)

estimator: α̂n for α∗ based on the observation sequence
Yn, n ≥ 0. This problem was investigated and already dis-
cussed in [5, 6, 7]. Following the footsteps of these authors,
we will apply the expectation maximisation (EM) method.
However, we will combine it with suitably designed parti-
cle filters (see sections 3, 4) while in [5, 6, 7] an MCMC
approach was used instead. We analyse our simulation re-
sults in section 5.

3. Motivation for using particle filters

Particle filters (PFs) can be and are used for state- and
probability estimations in numerous applications. They
work well with difficult and non-linear Markovian models
where the Kalman filters can not be used. Particle filters
without resampling proved not to be efficient enough for
complex, practical problems. Particle filters with resam-
pling have much better performance. They lose, however,
the property of being suitable for estimating functionals de-
pending on the entire trajectory, because we alter the distri-
bution of the particles during resampling since this would
require keeping alive all the particles along the whole tra-
jectory.

Nevertheless, in the following sections we would like to
show how particle filters with resampling can be used suc-
cesfully as part of the EM method for parameter estimation
of quantized AR processes. To have simple formulas, we
assume X−1 = 0 and σ∗ = 1/2, but the conclusions hold for
arbitrary values of these parameters.

For the moment we fix n, the number of iterations and
concentrate on determining α̂n. Introducing the notation

p(α; y0, . . . , yn) =
1

π(n+1)/2 e−y2
0−
∑n

j=1(y j−αy j−1)2
,

the estimate α̂n can be found by maximising

eLn(α) =

∫
Q(Y0,...,Yn)

p(α; y0, . . . , yn)dy0 . . . dyn, (1)

2012 International Symposium on Nonlinear Theory and its Applications
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012

- 427 -

in α which amounts, by taking the derivative, to solving

∫
Q(Y0 ,...,Yn)

 n∑
j=1

−y j−1(y j − αy j−1)

 p(α; y0, . . . , yn)dy0 . . . dyn = 0,

(2)
here Q(Y0, . . . ,Yn) denotes the cube [Y0 − 1/2,Y0 + 1/2]×
. . . × [Yn − 1/2,Yn + 1/2].

Since equation 2 is a complicated nonlinear equation,
following [5, 6, 7], we apply the EM method when imple-
menting the calculation of the ML estimate. In the present
context this means setting an arbitrary value α̃0 and then
determining α̃l recursively as the root of

∫
Q(Y0 ,...,Yn)

 n∑
j=1

−y j−1(y j − αy j−1)

 p(α̃l−1; y0, . . . , yn)dy0 . . . dyn = 0

(3)
Based on empirical evidence and theoretical results in var-
ious model classes one expects that, after a suitable number
of iterations (i.e. l large enough), one can get close to α̂n.
The great advantage of equation 3 is that it is linear in α,
this way its solution can be obtained easily by the usage of
simple gradient methods.

Calculating α̃l still poses a significant challenge as it re-
quires the estimate of a functional of a trajectory (the in-
tegral in equation 3). Unlike in [5, 6, 7], where a Markov
chain Monte Carlo approach is suggested, we apply par-
ticle filters for the determination of the integrals 3. Note
also that in [5, 6, 7] test runs concentrated on the i.i.d. case
(where α∗ = 0 is known) and the (unknown) expectation of
ε1 was estimated. In the present paper we took Eε1 = 0
for simplicity but α∗ is non-zero which leads to a far more
difficult, non-i.i.d. dynamics for the processes Xn,Yn and
hence poses a much more complex problem.

Applying PFs without resampling seems hopeless, espe-
cially considering the fact that in the present case we have a
non-discrete, infinite state space where probability distribu-
tion of the trajectories is continuos so even by discretization
without resampling we need an extremely large number of
particles to simulate these trajectories.

It turns out that, with a small alteration PFs with resam-
pling (i.e. the standard bootstrap filter) can be succesfully
used for probability estimation. The changes in the al-
gorithm require some extra computation, but the number
of particles can be decreased drastically compared to the
method without resampling.

4. Estimation of functionals of a trajectory by Particle
Filters with resampling

We explain a method to evaluate the integral in equa-
tion 1 (i.e. equation 4 below), calculation of the integral in
EQ(3) can be carried out much in the same way.

In practical problems we usually have a given trajectory
yt, t = 0, 1, . . . ,T generated by the previous model with T
iterations (in our paper we chose T = 100 or T = 200).

Our aim is to estimate the probability that from the given
model we will get the given trajectory of observations, i.e.:

P(Yt = yt,Yt−1 = yt−1...Y0 = y0). (4)

Sequential Monte Carlo methods such as particle fil-
ters are routinely used in the case of such complex, non-
linear stochastic models with non-linear observations. The
present system, however, has been revealed to be more
challenging than usual.

First we look at PFs without resampling. We start off

with an initial guess α̃0 for α̂n.
At the initial step (t = 0) we generate N particles, ξ0

k ,
k = 1, . . . ,N, i.i.d. with the same distribution N(X−1, σ

2
∗)

(i.e. with the law of X(α̃0)
0 .

At step t we iterate the particles using the system dynam-
ics, i.e.

ξt+1
k := α̃0ξ

t
k + εk

t+1

with εk
t+1 i.i.d. Gaussian with mean 0 and variance σ∗.

Every particle represents one possible trajectory and af-
ter the last (T th) iteration we can calculate how many par-
ticles are identical with our observation. Based on this
amount our estimate for the probability in EQ(4) is the rel-
ative frequency

p(α̃l−1; y0, . . . , yn) =

∑N
i=1 Iy0...yn (ξ0

i . . . ξ
n
i)

N
.

Where the nominator on the right hand side represents the
number of particles which results the same observations
for every time and the denominator N is the total num-
ber of particles used. In theory this fraction converges to
the real value in EQ 4, however in practice, especially in
case of long, multidimensional trajectories we have to use
an extremely large number of particles, because after each
step the number of matching trajectories will always be de-
creased by the same amount in average.

However, PFs with resampling (based on the current ob-
servation) are more promising, especially when combined
with importance sampling. We can decrease the number of
useless particles, and increase the number of useful ones.
The main point is that, in this way, the number of particles
required will not depend on the length of the trajectory. PFs
with resampling work well for estimating the density of XT

conditional to the observations Y0, . . . ,YT . But during the
resampling procedure the ratio between the number of good
and bad particles gets lost and the estimation of the prob-
ability for the whole observed trajectory does not work in
the obvious manner.

Here we briefly describe, how one can calculate the
probabilities between state transitions: although at each
step certain particles do not match the observation and
hence drop out from the cohort (as they are resampled with
probability 0) one can ‘blow up’ the remaining cohort of,
say, M ‘matching particles’, respecting the overall distri-
bution of particles, to size N again. Getting more into
the technicalities, this involves a discretization of the state

- 428 -

space [Yt − 1/2,Yt + 1/2) using a suitable mesh size; then
one has to calculate how many of the matching particles
fall into the respective intervals and from this one can cre-
ate a new cohort of N following the same distribution as
the previous M particles.

We can approximate the distribution of these particles by
dividing the set of the possible observations into Q intervals
and calculate the number of matching particles (ξ∗k) in every
interval.

f (q) =

∑
k ξ
∗
keIq

N
∀q = L1 : Q (5)

the limit of f (q) is the distribution of the hidden states as
the number of particles approaches infinity.

Let us note the approximated distribution of the particles
after the resampling with g(i). There are no known theoreti-
cal connection between f (i) and g(i). g(i) can be calculated
easily in the same way as in equation 5.

Our aim is now to reserve the distribution of the parti-
cles. We can introduce the following operator, which is
how the resampling step alters the distribution of the co-
hort:

ν(f (q)) = g(q) (6)

That transform f (q) into g(q). It can be easily seen that ν is
always invertable and we can use ν−1 to restore f (q) from
g(q).

All we have to do is to set the weights in interval q to
ν−1(g(q)) after this step the weighted sum in interval q will
be equal to the probability that the hidden state will be an
element of interval q.

f (q) =
∑

k

wt
kξ

t
k : ξ∗keIq (7)

where ξt
k are particles after the resampling step and wt

k
represents the weight of the particle.

The mesh size (Q) is another parameter to be optimized
for concrete test runs. An optimal mesh size can be cal-
culated/approximated offline for every known model. We
aslo have to note, when the mesh size is: Q = 1, we will
have the simple method with resampling,the regular boot-
strap filter, where we do not alter the weights of the co-
hort. We do not have to alter bootstrap filters to expand the
number of good particles after a resampling (because this
is what resampling does), if all the weights are zero out-
side the given interval, only N particles within the interval
can be selected, however some particles will be selected
repeatedly and they will be overrepresented in the current
distribution (it is also possible that some particles will not
be selected- they will be underrepresented). We will not al-
ter the distribution of the particle, we will alter the weights
and with this the distribution that the particles are forming.
This way the distribution of the particles is the same as in
case of the regular boostrap filter, which convergence has
been proofed [2].

In this way we can calculate probabilities of trajectories
as well as integrals of EQ(3) using PFs with resampling,

which makes the number of particles to be used exponen-
tially less.

From this point on we follow the EM method: having
calculated the integral in EQ(3) using α̃0 as a parameter,
one may get α̃1 solving EQ(3), then iterate the procedure
to get better and better approximations α̃l of α̂n, where l is
the number of iterations performed.

This way we can melt the advantages of probability cal-
culations with the fast, parallel computation possibility of
bootstrap filters.

5. Simulations and Results

We have created a virtual machine to test the usability of
our method in practice. We have simulated different AR(1)
processes and we have tried to estimate the parameters ac-
cording to the previously described algorithm. We have
repeated every measurement 10.000 times and calculated
the absolute error as an average to eliminate the noise of
our measurements.

As it can be seen in table 1 and 2 our result have the
same accuracy as in ... It can also be seen, that the usage of
importance-sampling results a much lower error, especially
in case of large number of particles. This low errors (we
can approximate α with error ±0.001) is accurate enough
to be used in case of real life problems.

With this type of calculation one iteration of α̃l with
1000 particles and over a 100 steps long trajectory could
be calculated in 4.6 seconds on a single core architecture.
Even on a four core architecture, the execution speed can
be further decreased: the same estimation can be calculated
in 1.8 sec on an Intel Q9600 CPU.

The main advantage of our method is, that almost ev-
ery step of the algorithm (including the time consuming
resampling step) is paralellizable, hence on a proper archi-
tecture such as an FPGA, GPU or digital-CNN architecture
the computation speed could be further decreased, see [1].

In case of the method without resampling, α̃l can not be
estimated with 1000 particles at all, because in most of the
cases there are no trajectories that will match our observa-
tions. For the current model and for a trajectory of length
100 the PF with resampling could calculate the probability
with 300 particles with the same accuracy as a PF with-
out resampling with 10.000.000 particles. This shows how
drastically decrasing the number of efficiently used parti-
cles without reasmpling. While we keep all of the particles
and the computational power efficient, for a longer trajec-
tory the computation time will increase linearly (instead of
the exponential growth of the normal method), because the
number of the efficient particles are not decreasing.

The bigest problem in case of this algorithm is, that we
have no information about α. If the distance between the
real value and the distance between our initial value is too
large there will not be any matching particles to the obser-
vation. This way our distribution will be a constant zero
function, which is not a real distribution. To avoid this we

- 429 -

can restart our algorithm with an other parameter, however
this takes an extra iteration. To avoid this extra calcula-
tion and further speed up our algorithm we can extend our
model and add α̃0 as a parameter, this way we can start our
algorithm with multiple values of α̃ and the parameters not
matching the observations will be filtered out during the
iterations by the resampling step.

6. Conclusion

In this paper we have described a method that melts the
advantages of probability calculations with the fast, par-
allel computation possibility of bootstrap filters. The pro-
cessing speed of our method depends linearly on the trajec-
tory length and its accuracy increasing with it. In previous
methods and solutions either the accuracy did no change
without the exponential increase of computation or the run-
ing time depended exponentialy on the length of the trajec-
tory. Our method fits ideally on a multicore architecture
such as an FPGA, GPU or digital-CNN and with this we
could create a device that can solve this difficult problem
in real-time with low power consumption.

Acknowledgments

The support of the grants TÁMOP-4.2.1.B-11/2/KMR-
2011-0002 and TÁMOP-4.2.2/B-10/1-2010-0014 are
gratefully acknowledged.

References

[1] A. Horvath, M. Rasonyi Topographic Implementation
of Particle Filters on Cellular Processor Arrays. ELSE-
VIER Signal Processing Submitted

[2] D. Crisan, A. Doucet. A Survey of Convergence Re-
sults on Particle Filtering Methods for Practitioners.
IEEE Transactions on Signal Processing 736-746,
2002

[3] D. Magill. Optimal adaptive estimation of sampled
stochastic processes. IEEE Transactions on Automatic
Control 434 - 439, 1965

[4] H. Boche, U. J. Monich. Behavior of the Quantiza-
tion Operator for Bandlimited, Nonoversampled Sig-
nals. IEEE Transactions on Information Theory 2433
- 2440, 2010

[5] L. Finesso, L. Gerencsér, I. Kmecs. A randomized EM-
algorithm for estimating quantized linear Gaussian re-
gression. Proceedings of the 38th IEEE Conference on
Decision and Control, Phoenix, Arizona, USA. 5100–
5101, 1999.

[6] L. Finesso, L. Gerencsér, I. Kmecs. A recursive ran-
domized EM-algorithm for estimation under quantiza-
tion error. Proceedings of the American Control Con-
ference, Chicago, Illinois., 790–791, 2000.

[7] L. Gerencsér, I. Kmecs, B. Torma. Quantization with
adaptation – estimation of Gaussian linear models.
Communications in Information and Systems, 8, 223–
244, 2008.

7. Tables

NumP 1000 1000 1000 2000
Div 10 20 50 20

TrajL 100 100 100 500
I1 0.1472 0.0682 0.0672 0.0141
I2 0.1263 0.0680 0.0672 0.0125
I3 0.1080 0.0678 0.0672 0.0114
I4 0.0860 0.0675 0.0669 0.0112
I5 0.0750 0.0673 0.0669 0.0110
I6 0.0724 0.0672 0.0666 0.0110
I7 0.0722 0.0666 0.0665 0.0110
I8 0.0719 0.0666 0.0658 0.0110

Table 1: The first row contains the number of particles (N),
the second row contains ’how fine’ the interval of the ob-
servation was divided (Q) for the distribution estimation,
The third row is the length of the trajectory (n) and the
rows behind this are the errors to every iteration of the
EM method. This experiments were done with using the
importance-sampling method

NumP 1000 1000 1000 1000
Div 10 20 50 100

TrajL 100 100 100 100
I1 0.0847 0.1152 0.1661 0.2127
I2 0.0826 0.0991 0.1524 0.2056
I3 0.0801 0.0976 0.1471 0.1948
I4 0.0760 0.0958 0.1439 0.1866
I5 0.0750 0.0951 0.1393 0.1820
I6 0.0741 0.0948 0.1373 0.1748
I7 0.0722 0.0910 0.1274 0.1647
I8 0.0719 0.0908 0.1268 0.1629

Table 2: The first row contains the number of particles (N),
the second row contains ’how fine’ the interval of the obser-
vation was divided (Q) for the distribution estimation, The
third row is the length of the trajectory (n) and the rows be-
hind this are the errors to every iteration of the EM method.
This experiments were done without using the importance-
sampling method

- 430 -

