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Abstract—This paper studies a continuous-time
non-autonomous spiking oscillators that can exhibit
hyperchaos. The circuit has a firing switch depending
on the threshold of a state variable and periodic clock
signal. As parameters vary, the circuit can exhibit a
variety of chaotic/periodic spike-trains. We analyze
the spike-trains by three tools: the return map, the
histogram and the recurrence plot. Using these tools,
we investigate characteristics of typical spike-trains.

1. Introduction

This paper studies a hyperchaotic circuit (HCC)
with impulsive switching controlled by refractory
threshold and spike-train input. HCSC closely re-
lates to spiking neurons model [1]-[3] and it can output
various spike-trains based on integrate-and-fire behav-
ior. They can be a building block of various engi-
neering systems including image processing and ultra
wide band communications [4]-[6]. A 4D system con-
structed by three capacitors, three voltage controlled
current sources (VCCSs), a firing switch and a voltage
source. A firing switch is constructed by two switches:
state-dependent switch SS and time-dependent switch
ST . When firing switches are opened, capacitor volt-
age vibrates divergently. We introduce three analysis
tools of the spike-trains of the HCC. The first tool
is the return map (Rmap) of the state variable at
every firing moment. This circuit has 2D piecewise-
linear Rap. Rmap is useful to analyze HCC’s stabil-
ity and bifurcation of spike-train generators, provided
the state variables are observable. HCC can output
various phenomenon, we remark a hyperchaotic phe-
nomenon. We derive Lyapunov exponents from Rmap.
The second tool is the histogram of inter-spike inter-
vals (ISI). It corresponds to the Fourier spectrum for
smooth signals and is convenient to extract basic infor-
mation from spike-trains. The third tool is the recur-
rence plot (RP [7] [8]) for ISI sequences. The RP has
been used to characterize chaotic/periodic attractors
and has potential to extract information hidden in the
ISI sequence. We apply these tools to the HCCs and
demonstrate typical date. The results provide basic
information to develop systematic analysis of spike-
trains in nonlinear circuits and systems. We studied
various circuits related the HCC [9]-[17], this is the

first paper that analyze 4D systems using firing switch
constructed by SS and ST . And this is the first paper
that analyze hyperchaos by piecewise linear 2D Return
map.

2. Hyperchaotic Circuit

The HCC is constructed by three capacitors
C1, C2, C3, three voltage controlled current sources
VCCS1,VCCS2,VCCS3, the state-dependent switch
SS , the time-dependent switch ST and the voltage
source E. Fig.1(a) shows circuit model of the HCC.
These VCCS’s output currents are described by the
following equation.

(i1, i2, i3) = (g1v3, g2(v2 − v3), g3(v2 − v1)) (1)

Therefore dynamics of the HCC and spike-trains z(t)
described by the following circuit equation.

d

dt

⎡
⎣ C1v1

C2v2

C3v3

⎤
⎦ =

⎡
⎣ 0 0 g1

0 g2 −g2

−g3 g3 0

⎤
⎦

⎡
⎣ v1

v2

v3

⎤
⎦ for z = 0

(2)
(v1(t+), v2(t+), v3(t+)) = (E, v2(t), v3(t)) for z = 1

(3)

z(t) =
{

1 if v1 ≥ VT and d = nT
0 otherwise

Fig.1(b) shows the dynamics of the HCC. If z =
0 then capacitor voltage vibrates divergently. If the
capacitor voltage v1 exceeds the threshold voltage VT ,
the switch SS is closed. And a clock signal arrives, the
switch ST is closed. If the switch SS and the switch ST

are closed, z becomes 1 and the capacitor voltage v1

jumps to the base level E. Repeating this vibrate-and-
fire behavior, the HCC can output various spike-trains
z(τ ).

We assume that the characteristic root of Equation
(2) has complex conjugate eigenvalues described Equa-
tion(4).

s3 − g2

C2
s2 + (

g1g3

C1C3
+

g2g3

C2C3
)s − g1g2g3

C1C2C3

= (s − λω)(s2 − δωs − (δ2ω2 + ω2)) (4)
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Figure 1: (a)Circuit model of the HCC, (b)Dynamics
of the HCC

For convenience of discussions on analysis of spike-
trains, using the following dimensionless parameters
and variables:

τ = ωt, d = ωT, q = E
VT

, v = [v1, v2, v3]T ,

u = [u1, u2, u3]T , e1 = [1, 0, 0]T, p = [1− p3, p2, p3],
v = Tu, p = T−1e1

T

T = VT

⎡
⎣ 1 0 0

0 0 1
−g3C1

g1C3

g3C1
g1C3

0

⎤
⎦
−1

×
⎡
⎣ 1 0 1

δωC1
g1

ωC1
g1

λωC1
g1

(δ2 − 1)(ωC1
g1

)2 2δ(ωC1
g1

)2 (λωC1
g1

)2

⎤
⎦(5)

Equation(3)(4) is transformed into Equation(6).

d
dτ

⎡
⎣ u1

u2

u3

⎤
⎦ =

⎡
⎣ δ 1 0

−1 δ 0
0 0 λ

⎤
⎦

⎡
⎣ u1

u2

u3

⎤
⎦ for z = 0

⎡
⎣ u1(τ+)

u2(τ+)
u3(τ+)

⎤
⎦ =

⎡
⎣ u1 − (1 − p3)(u1 + u3 − q)

u3 − p2(u1 + u3 − q)
u3 − p3(u1 + u3 − q)

⎤
⎦

for z = 1
(6)

z(t) =
{

1 if u1 + u3 ≥ 1 and τ = nd
0 otherwise

This is the normal form equation having
six parameters: (δ, λ, p2, p3, q, d). For simplic-
ity, we define parameters as (δ, λ, p2, p3, q) =
(0.02, 0.04,−0.05, 0.5, 0.7).

The trajectory rotates divergently around the u3

axis. If the trajectory exceeds the threshold plane
u1 + u3 = 1 and clock period reaches, it jumps in-
stantaneously on to the base plane u1 + u3 = q along
direction vector (1 − p3, p2, p3)T . Equation(6) has the
following exact piecewise solution.

⎡
⎣ u1(τ )

u2(τ )
u3(τ )

⎤
⎦ = eδτ

⎡
⎣ cos τ sin τ 0

− sin τ cos τ 0
0 0 e(λ−δ)τ

⎤
⎦

⎡
⎣ u1(0)

u2(0)
u3(0)

⎤
⎦

(7)

Figure 2: Left: Typical trajectory, Right: 2D Rmap
(a) periodic for d = 2, (b) chaotic for d = 3.6, (c)
hyperchaotic for d = 5.3

(u1(0), u2(0), u3(0)) denotes an initial state vector.
Fig.2 show typical trajectories and 2D Rmap calcu-
lated and converted back using equation(6)(7).

As d = 2, trajectory is periodic and Rmap has 3
points and Lyapunov exponent λ11 = −0.34, λ12 =
−0.34. As d = 3.6, trajectory is chaotic and Rmap has
some lines and Lyapunov exponent λ11 = 0.06, λ12 =
−1.82. As d = 5.3, trajectory is hyperchaotic and
Rmap has some lines and planes and Lyapunov expo-
nent λ11 = 0.10, λ12 = 0.06.

3. Analysis

3.1. Histogram

The histogram is most basic method to consider the
ISI characteristic. For using the histogram of ISI, we
define two quantities τn and δτn. Let τn denote the
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n-th spike position and let δτn = τn − τn−1 denote n-
th ISI. Using these quantity, we can make histogram
of the ISI. Fig.3 shows the histogram corresponding
to Fig.2. Since we use clock period d in switching
rule, the histogram shows some line spectrum at sev-
eral multiples of d as shown in Fig.3. The color of the
histogram and the RP is depend on own ISI. Fig.3(d)
shows the coloring of the histogram and the RP.

Figure 3: Histogram of the ISI (a) periodic for d = 2,
(b) chaotic for d = 3.6, (c) hyperchaotic for d = 5.3,
(d) coloring rule

As d = 2, histogram has two peaks. As d = 3.6, his-
togram has two peaks. These two histogram of the ISI
are similar to each shape. As d = 5.3, histogram has
many peaks. These many peaks means HCC output
complex spike-trains. It is difficult to classify the ISI
only by the Histogram of the ISI. Hence, we consider
to the ISI by RP.

3.2. Recurrence plot

The RP is known as an analyzing method of chaotic
dynamics. Using the RP, we can transform the time
series ISI date to graphics.

Let us consider the RP for ISI sequence of the CSO.
Let P be a two-dimensional plane. Calculate the
distance D(i, j) between the i-th and j-th ISI data:
D(i, j) = |Δτi − Δτj|. If D(i, j) = 0, then we plot the
(i, j) cell of P where θD = 0. Color of cell is depend
on the width of ISI. Repeating this process for all the
D(i, j), we can make the RP. It should be noted that
we can set θD = 0 because the ISI is restricted in a
multiple of d. If spike-train is periodic, the RP is uni-
form image. If spike-train is chaotic/hyperchaotic, the
RP is complex image. As d = 2, the RP is repeating
uniform image. As d = 3.6, many blue box and few
green box exhibits randomly because the same ISI is
repeated many times and the other ISI is exhibited
rarely. As d = 5.3, the RP has many green box and
some colors box is exhibited. The difference of color
means the distance of the ISI.

In order to derive a 2D Return map, we define a
plane

Pc ≡ {(u1, u2, u3)|u1 + u3 = q} (8)

Let a point on Pc be represented by its u2 and u3-
coordinates. As a trajectory starts from a point

(u20, u30) on Pc at τ = 0. it will exceed the threshold
at some positive time τ = τ0. At the next clock signal
arrives, the trajectory jumps to a point(u21, u31) on
Pc. Then we can define the following 2D Return map.

F : Pc → Pc, (u20, u30) �→ (u21, u31)
(u21, u31) = F (u20, u30)

= (f(u20, u30, nd), g(u20, u30, nd)) (9)

The function f and g are calculated using Equa-
tions(6)(7).

f(u20, u30, nd) = eδnd(u20 + p2(u30 − q) cos nd

−(q − u30 + p2u20) sin nd) + p3(q − eλndu30) (10)

g(u20, u30, nd) = eλnd(1 − p3)u30

−eδndp3((q − u30) cos nd + u20 sin nd) + p3q (11)

Right of Fig.1 shows 2D Rmaps. Using these maps,
Lyapunov exponents can be calculated analytically us-
ing following equations.

DF (u20, u30) =
∂(u21, u31)
∂(u20, u30)

(12)

λ21 = lim
N→∞

1
N

N−1∑
j=1

DF (u2j, u3j) (13)

λ11 = lim
N→∞

1
N

N−1∑
j=1

DF (u2j, u3j)ej (14)

λ12 = λ21 − λ11 (15)

ej+1 =
DF (v2j, v3j)ej

|DF (v2j, v3j)ej | (16)

λ11 and λ12 denote first and second 1D Lyapunov
exponent. And λ21 denote 2D Lyapunov exponent.
When 0 > λ11 > λ12, the HCC generates periodic
dynamics and Rmap has some points. When λ11 >
0 > λ12 , the HCC generates chaotic dynamics and
Rmap has some lines. When λ11 ≥ λ12 > 0 , the HCC
generates hyperchaotic dynamics and Rmap has some
lines and planes.

4. Conclusions

We have analyzed dynamics and spike-trains from
the HCC with impulsive switching controlled by refrac-
tory threshold and Spike-train input. Using the Rmap,
we have visualized stability. Using the histogram of
the ISI and the RP, we have visualized dynamics of
spike-trains. We show the HCC can exhibit various
dynamics and we can analyze by using these tools.

Future problems include detail analysis of bifurca-
tion and finding more simple analysis tools.
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Figure 4: Recurrence plot of the ISI (a) periodic for
d = 2, (b) chaotic for d = 3.6, (c) hyperchaotic for
d = 5.3
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