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Effects of a defect and drift on dissipative solitons
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Abstract—We consider dissipative solitons arising in
the Swift-Hohenberg equation and study the effects of
adding a pinning defect and drift. The competition be-
tween the pinning of dissipative solitons to the defect and
the pulling of the drift term give rise to complex dynamical
behaviour. In particular we show that dissipative solitons
display excitability by a number of different mechanisms.

1. Introduction

Dissipative solitons (also known as localized structures)
are states in extended media that consist of one region in
one state surrounded by a stable stationary state. These
structures were first suggested in Refs. [1, 2] and then de-
scribed in a variety of systems, such as chemical reactions
[3], semiconductors [4], granular media [5], binary-fluid
convection [6, 7], vegetation patterns [8], and also in non-
linear optical cavities where they are usually referred as
Cavity Solitons (CS) [9, 10, 11, 12, 13]. Their potential
in optical storage and processing of information has been
stressed [14].

In general, dissipative solitons (DS) may develop a num-
ber of instabilities like start moving, breathing, or oscillat-
ing. In the latter case, they would oscillate in time while
remaining stationary in space, like the oscillons (oscillat-
ing localized structures) found in a vibrated layer of sand
[5]. The occurrence of these oscillons in autonomous sys-
tems has been reported both in optical [15] and chemical
systems [16]. It has been shown that they can become un-
stable leading to excitable solitons in systems for which the
local dynamics is not excitable [17]. In this case excitabil-
ity appears as an emergent property arising from the spatial
dependence, which allows for the formation of these struc-
tures. The inclusion of a defect in the systems enhance this
behaviour and can be used for potential information pro-
cessing applications [18].

Excitability is a concept arising originally from biology
(e.g. in neuroscience), and found in a large variety of non-
linear systems [19]. A system is said to be excitable if per-
turbations below a certain threshold decay exponentially
while perturbations above induce a large response before
going back to a resting state. Roughly speaking, excitabil-
ity needs two ingredients: a barrier in phase space that de-
fines the excitable threshold, and a re-entry mechanism that
sets the system back to the original state after a refractory
time. In excitability mediated by DS, the excitable thresh-
old is automatically set by the stable manifold of the un-

stable (middle-branch) DS, which is the barrier one has to
overcome to create an DS. The re-entry mechanism is, in
some cases, intrinsic to the dynamics of DS, as in [17].
The need for the re-entry mechanism limits the variety of
systems showing excitable DS.

In this work we show that a re-entry mechanism leading
to excitability can be implemented by adding a defect and
drift in a finite system. In this case, when a superthreshold
perturbation creates an DS on the defect, the drift pulls it
out and drives it to the limits of the system, where the DS
disappears and the system goes back to the original state.
This makes excitability commonplace in systems display-
ing DS when a defect and drift are introduced. Excitability
appears through a number of different mechanism depend-
ing on the size of the defect and the intensity of the drift.

2. Modified Swift-Hohenberg equation

We analyze this scenario in the general Swift-Hohenberg
equation close to the degenerate Hamiltonian-Hopf bifur-
cation where DS appear [20],

∂u
∂t
= −

(
∂2

∂x2 + k2
0

)2

u+c
∂u
∂x
+ r(x)u+au2−gu3+b(x) (1)

where u is a real field,

b(x) = h exp
[
−

( x − x0

σ

)2
]

is a defect modeled by a Gaussian function with height h,
and c the strength of the drift.

r(x) = r0 − 1 + exp
[
−

( x − x0

ε

)18
]

is a supergaussian profile to model a finite system where
the spatial structures advected away by the drift will die at
the boundary. DS exist for a >

√
27/38g, so, throughout

this work, we take a = 1 and g = 1, and r0 = −0.09 roughly
in the middle of the subcritical region where DS exist. We
also fix k2

0 = 0.5, σ = 2.045, ε = 98.17, and x0 = L/2 with
L = 418.88. h and c will be the main control parameters in
this study.

For numerical simulations, we integrate Eq (1) using a
pseudospectral method where the linear terms in Fourier
space are integrated exactly while the nonlinear ones are
integrated using a second-order in time aproximation [22].
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Figure 1: Bifurcation diagram showing the maximum of
stationary localized structures as a function of the height of
the localized Gaussian defect h for c = 0.2. The crosses
indicate the maximum and minimum value of the oscilla-
tions of a fixed point in space due to the cycle created at the
Hopf bifurcations.

Periodic boundary conditions have been used. The steady-
state DS, stable and unstable, are found by equating to
zero the left-hand side of Eq.1. Discretizing the space one
obtains a set of coupled nonlinear equations wich can be
solved using a Newton-Raphson method [23].

3. Dynamical analysis

One of the consequences of the term b(x) in Eq. (1) is
that the translational symmetry is broken. Solutions are
now pinned at x0 where the Gaussian defect is. This also
affects the transverse profile of the solutions, in particu-
lar the fundamental solution is no longer spatially homoge-
neous but it exhibits a small bump (see first panel of Fig.
2). The competition between the defect that produce a pin-
ning of the localized state and the advection term that try to
drift the solution away leads to different pinning-unpinning
transitions. Figure 1 shows the bifurcation diagram of the
localized solutions as a function of the size of the defect h
for c = 0.2.

DS are unpinned from the defect through two Hopf bi-
furcations. The first one (H+) is subcritical and leads to a
limit cycle where DS grow out of the (low amplitude) fun-
damental solutions and are then drifted away to die at the
boundary of the system, creating a train of soliton or soli-
ton tap [21]. Generally, the unstable cycle emerging from
a H+ bifurcation folds in a Fold of cycles (FC) bifurcation.
The region just below the H+ bifurcation exhibits excitable
behavior, specially if the FC and H+ are close (otherwise
the system is bistable and excursions may stay in the oscil-
latory upper state)(see Fig. 4).

If the system is set below H+, a perturbation applied to

Figure 2: Excitable excursion of the low amplitude funda-
mental solution close to the Hopf point H+. The dashed-
dotted line shows the supergaussian profile r(x) defining
the limits of the system.

the (low amplitude) fundamental solution grows to gener-
ate a DS that is advected away to die at the boundary, and
the system comes back to the resting state. The excitability
found in this region is of Type II [24], characterized by the
fact that the oscillations created at the bifurcation point H+

start with non zero frequency. An excitable excursion in
this case is shown in Fig. 2 for c = 0.7 and h = 0.055.

A different kind of behavior is the one shown in Fig. 3.
Here for larger values of h, large amplitude DS are again
pinned to the defect. In this case, decreasing h the drift is
eventually able to detach the DS and a new one is formed
creating again a cycle in a Hopf bifurcation H−. In this case
the bifurcation is supercritical, showing small oscillations
close to threshold, but decreasing h very little this small
oscillations become already very large, in a sort of canard,
creating a source of DS. This is again a mechanism lead-
ing to Type II excitability. In this case the resting state is,
though, a high amplitude DS (see first panel). In both cases
excitable excursions are induced by increasing transiently
the height of the defect, h in the first case and decreasing
in the second. The competition between the defect and the
drift unfolds, actually, a much richer scenario, shown in
Fig. 4

In addition to the two cases explained above, this sce-
nario has a third mechanism leading to excitability through
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Figure 3: The same as in Fig.2 but close to the second Hopf
point H−, for c = 0.2 and h = 0.12.

Figure 4: Two-parameter c vs h phase diagram of the soli-
ton solutions in the modified Swift-Hohenberg equation for
a = 1, g = 1, r = −0.09 and k2

0 = 0.5. Bifurcation lines are:
SN (S N1, S N2, S N3) saddle-nodes, SNIC saddle-node in
the invariant circle, H+ Subcritical-Hopf, H− Supercritical-
Hopf, and FC (Fold of Cycles). Regions delimited by bi-
furcation lines are as follows: I fundamental solution (ex-
citable close to FC), II oscillations (train of solitons), III DS
(excitable close to H−, IV DS (excitable close to SNIC),
and V bistability between fundamental solution and oscil-
lations.

a saddle-node in the invariant circle (SNIC) bifurcation. In
this case a (high amplitude) DS is also unpinned leading to
the excitable excursion, similar to the case of the supercrit-
ical Hopf H−, but in a Type I fashion, i.e., the oscillatory
regime created at the bifurcation exhibits frequencies with
arbitrary low values. The appearance of oscillations with a
divergence of the period has been experimentally observed
in semiconductor lasers [21], making the observation of the
scenario described in this work experimentally relevant.

4. Concluding remarks

In summary, we have shown how a defect and drift make
excitability a common feature of DS in extended systems.
Our results are completely general and show the different
mechanisms leading to this behavior. Type I and Type II
excitability can be observed through the unpinning of DS
from the defect.
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