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Abstract—In this paper the author discusses
asymptic behavior of cellular automata and their spa-
tial thermodynamic quantities, entropy and topologi-
cal pressure.

1. Introduction

Cellular automata as a class of dynamical systems
show various fascionating orbit structure. From the
viewpoint of ergodic theory, we can understand cellu-
lar automata as factors of subshifts [1]. Furthermore,
subshifts have also a backgrounds of statistical physics.
Though classification of attractor structure of cellular
automata is well described in [2] and [3], asymptotics
of thermodynamic quantities, entropy and topological
pressure, had not been studied because it is hard to
estimate the quantities in infinite-to-one factor case.

In this paper the author estimate asymptotics of
topological pressure for a class of cellular automaton
map which has bounded interaction radius.

2. Subshifts and thermodynamic formalism

Let S = {0, 1, . . . , s − 1} be an alphabet set and
Σ = SZ. Shift on Σ is defined for each x = (xi) ∈ Σ
by (σx)i = xi+1. We call the pair (Σ, σ) full s
shift. Open set family is generateed by cylinder sets
[a1 · · · ak] = {x ∈ Σ; ai ∈ S, xi = ai i = 1, · · · , k}
and by the topology Σ becomes a compact metrizable
space. It is easy to see that σ on Σ is a homeomor-
phism. For σ-invariant subset X ⊂ Σ, restriction of
σ on X is also a homeomorphism. We call the pair
(X,σ) a subshift.

For a given subshit X, a set Wn(X) denote all
admissible words of length n in X and W(X) =
∪nWn(X) word set of X. Fixn(X) = Fixn(X,σ) de-
note all fixed points σnx = x.

Typical example of subshift is Markov subshift. Let
M be a structure matrix of size s and X = {x ∈
Σ;Mxixi+1 = 1}. In this case #Fixn(X), cardinarity
of Fixn(X), equals to the sum of all elements of Mn.

Sofic subshifts are an extension of Markov subshifts.
We call a subshift sofic subshift if and only if its word
set is generated by a regular language. Markov sub-
shifts are also sofic subshifts.

Factor map τ of a subshift (X,σ) is a shift com-
mute continuous map. In other words, τ(σx) = σ(τx)

and continuous. Because factor of sofic subshift is also
sofic, sofic subshifts are a class of subshifts on which
cellular automata acts.

If a factor map is onto, it is a finite to one map. If
a factor map is not onto, it is a uncountably infinite
to one map. The second case means that transision
dynamics of cellular automata is hard to analyze as
dynamical systems.

For a irreducible sofic subshift (X,σ) and continuous
function U on X, topological pressure P (U) is defined
as follows:

P (U) = P (U,X, σ) = lim
n→∞

1

n
log

∑
x∈Fixn(X)

e−SnU(x)

where SnU(x) =
∑n−1
k=0 U(σkx). From the context of

statistical physics, P (U) corresponds free energy.
Let µ be a shift invariant Borel probability mea-

sure on X and α be a finite measurable parti-
tion of X. Entropy with respect to α is H(α) =∑
A∈α−µ(A) logµ(A). Entropy of the triplet (X,σ, µ)

is defined by

hµ(X,σ) = sup
α

lim
n→∞

1

n
H(α ∨ σ−1α ∨ · · ·σ−(n−1)α).

Note that the supremum atains if α is a generating
partition.

From the measure theoretic entropy we define topo-
logical entropy h(X,σ) by

h(X,σ) = sup
µ
hµ(Xσ)

and equals to limn
1
n log #Fixn(X,σ). In case of our

settings h(X,σ) = P (0) = P (Xn, σ).
For topologically mixing sofic subshifts with invari-

ant Borel probability measure ν (X,σ, ν) we have the
following variational principle.

P (U) = max
ν:invariant

hν(X,σ)−
∫
X

Udν

The equality holds if µ is Gibbs measure with U
bounded variation:

C−1 ≤ µ([x0x1 . . . xn−1])

exp(−nP (U)− SnU(x))
≤ C

where C is a constant.
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3. Zeta function and Tower representation

For a sofic subshift (X,σ) the definition of Ruelle’s
dynamical zeta function with potential U is the fol-
lowing:

ζ(z) = exp(−
∞∑
n=1

zn

n

∑
x∈Fixn(X)

e−SnU(x)).

It is well known that between the convergence radius
r of zeta function and topological pressure P (U) we
have P (U) = − log r.

Let B be a subset of W (X) and assume B generates
W (X) by concatenation of words, we can construct the
other dynamical system (BZ × N, σT ) which is equiv-
alent to (X,σ).

For y = (yi) ∈ BZ and n ≤ |y0|,

σT (y, n) =

{
(y, n+ 1) (n+ 1 < |y0|)
(σy, 0) (n+ 1 = |y0|)

By the representation, Ruelle’s dynamical zeta func-
tion ζ(z) of (X,σ) is the reciplocal of

D(z) = 1−
∑
b∈B

z|b|

i.e. ζ(z)−1 = D(z) and if U depends only on the first
word of y,

D(z) = 1−
∑
b∈B

e−SnU(b)z|b|.

Topological pressure P (U) equals convergence ra-
dius of zeta function. If (X,σ) is sofic, B is finite be-
cause the language of X is regular. So P (U) = − log r
where r is the minimum solution of D(z) = 0.

The formula shown in this section is in [4]

4. Entropy formula of factor map

Let τ : (X,σ) → (Y, σ) be a surjective factor map
from an ergodic subshift (X,σ, µ) to (Y, σ, ν) where
ν(·) = µ(τ−1(·)). It is easy to see the entropy formula

hµ(X,σ)− hν(Y, σ) =

∫
Y

hddν.

The function hd in L1(Y, ν) is defined by
limn

1
2n+1 log d(y−n · · · yn) where d(w) = #τ−1w.

The limit exists for almost every y ∈ Y because
subadditive ergodic theorem holds. The equality
holds if ν is a Gibbs measure with potential function
U(τ ·) where U(·) is a potential function on X.

Though this result is shown in [5], it is hard to es-
timate the entropy gap for each iteration of cellular
automaton map. In the case of spatial topological
pressure, we can estimate asymptotics if interaction
radius of cellular automaton map is bounded.

5. Asymptotics of topological pressure

If we have Ruelle’s dynamical zeta function, we can
estimate topological pressure from its convergence ra-
dius. In the case of bounded interaction radius, the
shift space is well represented by the tower transfor-
mation in Section 3. The example below is the typical
case of ECA224.

000 001 010 011 100 101 110 111
0 0 0 0 0 1 1 1

oo....o...o...o..ooo..o.o.oo.ooo.o.oo.oo..
oo................oo...o.o.oo.ooo.o.oo.o..
.o.................o....o.o.oo.ooo.o.oo...
.........................o.o.oo.ooo.o.o...
..........................o.o.oo.ooo.o....
...........................o.o.oo.ooo.....
............................o.o.oo.oo.....
.............................o.o.oo.o.....
..............................o.o.oo......
...............................o.o.o......
................................o.o.......
.................................o........
..........................................

Table 1: Rule table of ECA224 and typical orbit. ”o”
shows alphabet 1 and ”.” shows alphabet 0.

Example 1 Let X0 be full shift on {0, 1} and τ be
the cellular automaton map of ECA224. Set Xn =
τnX0 and Bn be the generator of the word set of
(Xn, σ) defined in Section 3. Then we have Bn =
(1, 10)+0+0n

⋃
(1, 10)

⋃
0 and

Dn(z) = (1− z − z2)(1− z)− (z + z2)zn+1.

Because the function DBn
(x) is explicitly written we

can have asymptotic behavior of topological pressure
with constant potential function P (Xn, σ) as follows:

P (Xn, σ) = P (X0, σ) +O(λn)

where λ = (−1 +
√

5)/2.

To estimate interaction radius of ECA224 is clear
and so it is easy to have Bn and ζn. The non-trivial
case is ECA184.

Example 2 For ECA184 by observation we have
Bn = (10, 1)∗(10)n(0, 01)∗ and

Dn(z) = (1− z − z2)2 − z2n(z + z2)2.

So we have

P (Xn, σ) = P (X0, σ) +O(λn)

where λ = (−1 +
√

5)/2.

The two example show that asymptotics of topologi-
cal pressure decays exponentially. And their exponent
are topological entropy of unstable invariant sets.
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000 001 010 011 100 101 110 111
0 0 0 1 1 1 0 1

..oooo.o....o......o...o.oooooo.o.ooo.o..o

..ooo.o.o....o......o...oooooo.o.ooo.o.o.o

..oo.o.o.o....o......o..ooooo.o.ooo.o.o.oo
o.o.o.o.o.o....o......o.oooo.o.ooo.o.o.oo.
.o.o.o.o.o.o....o......oooo.o.ooo.o.o.oo.o
o.o.o.o.o.o.o....o.....ooo.o.ooo.o.o.oo.o.
.o.o.o.o.o.o.o....o....oo.o.ooo.o.o.oo.o.o
o.o.o.o.o.o.o.o....o...o.o.ooo.o.o.oo.o.o.
.o.o.o.o.o.o.o.o....o...o.ooo.o.o.oo.o.o.o
o.o.o.o.o.o.o.o.o....o...ooo.o.o.oo.o.o.o.
.o.o.o.o.o.o.o.o.o....o..oo.o.o.oo.o.o.o.o
o.o.o.o.o.o.o.o.o.o....o.o.o.o.oo.o.o.o.o.
.o.o.o.o.o.o.o.o.o.o....o.o.o.oo.o.o.o.o.o
o.o.o.o.o.o.o.o.o.o.o....o.o.oo.o.o.o.o.o.
.o.o.o.o.o.o.o.o.o.o.o....o.oo.o.o.o.o.o.o
o.o.o.o.o.o.o.o.o.o.o.o....oo.o.o.o.o.o.o.
.o.o.o.o.o.o.o.o.o.o.o.o...o.o.o.o.o.o.o.o
o.o.o.o.o.o.o.o.o.o.o.o.o...o.o.o.o.o.o.o.
.o.o.o.o.o.o.o.o.o.o.o.o.o...o.o.o.o.o.o.o
o.o.o.o.o.o.o.o.o.o.o.o.o.o...o.o.o.o.o.o.
.o.o.o.o.o.o.o.o.o.o.o.o.o.o...o.o.o.o.o.o

Table 2: Rule table of ECA184 and typical orbit. ”o”
shows alphabet 1 and ”.” shows alphabet 0. The num-
ber of 1 is conservative.

Because ECA184 conserves the number of ’1’, ini-
tial distribution p of “1” plays important role in the
asymptotics. To study the effects of the distribution,
we see the potential function on the attractor deter-
mined by the initial distribution.

If p = 0, its initial configuration and attractor
are one point {0∞}. Case p = 1/2, its attractor is
{(10)∞, (01)∞}. In the two case we have P (X∞, σ) =
0 because there exists only finite number of points in
their attractor. However, p = 1/2 case, basin of at-
traction is also a shift invariant and has entropy log 2.

In case of 0 < p < 1/2 we have positive topological
pressures and B∞ = (0+(10)+). So we have a problem
the relationship between p and P (X∞, σ) with suitable
weights. For each b = 0m(10)n ∈ B∞ we can construct
corresponding initial configurations to both term 0m

and (10)n. For term 0m we only have initial configu-
ration 0m with probability (1 − p)m. For term (10)n

we have initial configuration of “first return path of
length 2n” and the number of them is equals to Cata-
lan number Cn with probability (p(1 − p))n. By the
obserbarion we have the following result.

Result 1 Let B∞ = (0, 10) be the generating word set
of attractor X∞ = ∪nτnX0 in case of p < 1/2. We
set a weight function U(b) = (1−p)m(p(1−p))nCn for
each b = 0m(10)n ∈ B∞ where Cn = 1

n+1 (2n)!/(n!)2

is Catalan number. Then we have

D∞(z) = 1− qz

1− qz
1−

√
1− 4pqz2

2pz

and convergence radius is min(1/q, 1/
√

4pq) where q =
1− p. Hence, we get the result on topological pressure

of (X∞, σ) with p < 1/2

P (U) =

{
− log(1− p) (0 ≤ p < 1/5)

log 2− 1
2 (log p+ log(1− p) (1/5 ≤ p < 1/2).

6. Conclusion

In this paper we show three examples of asymptotics
of topological pressure. To estimate them we use reg-
ular languages of sofic subshift and its zeta function.
This framework works well if interaction radius of cel-
lular automaton map is bounded. The problems in the
future is to apply this methos to unbounded case.
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