
IEICE Proceeding Series

All Solution Algorithm for Parameter-Dependent Nonlinear Equations
Using Affine Arithmetic

Kosuke Ihara, Yuchi Kanzawa

Vol. 1 pp. 419-422
Publication Date: 2014/03/17
Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers

Downloaded from www.proceeding.ieice.org

All Solution Algorithm for Parameter-Dependent Nonlinear Equations
Using Affine Arithmetic

Kosuke Ihara† and Yuchi Kanzawa†

†Shibaura Institute of Technology 3-7-5 Toyosu Koto-ku, Tokyo 135-8548, Japan
Email: ma11021@shibaura-it.ac.jp, kanzawa@sic.shibaura-it.ac.jp

Abstract—A new all solution algorithm is proposed for
parameter-dependent nonlinear equations. In this algo-
rithm, affine arithmetic[1], which is more accurate than in-
terval arithmetic[2], is used for an existence test and two
non-existence tests of a solution. The efficiency of the pro-
posed algorithm is verified by some numerical examples.

1. Introduction

In this paper, we consider the parameter-dependent non-
linear equations

f : D ⊂ Rn+m → Rn, f (x) = 0, x ∈ Rn+m (1)
in a given domain T ⊂ D. Assume that f is continuously
differentiable and can be estimated by interval arithmetic
(IA)[2] and affine arithmetic (AA)[1].

Algorithms based on IA are well-known computational
methods for finding all solutions of Eq.(1)(e.g., [2]). In
this method, we need to take the hyper-rectangle as the
test domain that is parallel to axes, and we need to select
m parameters from (n + m) variables. Subsequently, we
guarantee the existence of a solution with IA. However, the
main drawback of this method is that it involves extremely
high computational costs. To improve this algorithm, it is
necessary to develop an efficient existence test for a solu-
tion. An efficient non-existence test using AA[3], proposed
for Eq.(1) with m = 0, could be used with m > 0. Al-
though an existence test using AA for Eq.(1) with m = 0
was proposed[4], it cannot be used for Eq.(1) with m > 0.

The purpose of this paper is to propose an existence test
using AA for Eq.(1) with m > 0 and to propose an all solu-
tion algorithm for Eq.(1), including the proposed existence
test. First, we present an existence theorem for Eq.(1) using
AA, where parameter selection is not needed; in contrast,
parameter selection is needed in the test using IA. Then, we
propose an all solution algorithm including the proposed
existence test and the non-existence test proposed in [3].
Furthermore, we consider an all solution algorithm includ-
ing two existence tests, one using AA and the other using
IA. By developing an efficient existence test for a solution
using AA, which is more accurate than that using IA, we
can efficiently find all solutions for Eq.(1). Finally, we ver-
ify the efficiency of the proposed algorithm through some
numerical examples.

The remainder of this paper is organized as follows. In
section 2, we explain some notations and definitions for
AA, and we introduce a non-existence test using AA. In
section 3, we propose an existence theorem for a solution
of Eq.(1) using AA and an all solution algorithm using AA.
In section 4, we present some numerical examples. Finally,
in section 5, we conclude the paper.

2. Preliminaries

In this section, we briefly explain the notations and def-
initions that will be used in this paper, and we introduce a
non-existence test using AA.

2.1. Affine arithmetic

The essential drawback of IA is that it causes unexpected
overestimation of calculation results because correlation
between quantities is ignored. In order to overcome this
problem, affine arithmetic (AA)[1], an extension of IA, was
proposed in 1994. AA is a variant of IA, which maintains
correlation between quantities. Thus, AA is able to avoid
the extreme increase in interval width often observed in IA.

In AA, a quantity x is represented in the affine form[1]

x = x0 +

n
∑

i=1

xiεi + xn+1δ, (xi ∈ R), (2)

where εi(i = 1, . . . , n) and δ are symbolic real variables
in the interval [−1, 1]. Conventional AA[1] adds a new
term εn+1 with each nonlinear operation, whereas in this
paper, we sum up such terms into δ. Vector whose ele-
ments are affine forms is called affine form vector. Interval
[x] is transformed into the following affine form:

x =
x + x

2
+

x − x

2
ε1, (3)

where x ∈ R and x ∈ R are the lower and upper endpoint
of the [x], respectively. The affine form expressed in Eq.(2)
can always be returned to an interval by the following for-
mula:

[x0 − ∆, x0 + ∆], ∆ =

n+1
∑

i=1

|xi|. (4)

For affine forms
x = x0 + x1ε1 + · · · + xnεn + xn+1δ, (5)
y = y0 + y1ε1 + · · · + ynεn + yn+1δ, (6)

linear operations are defined naturally as follows:

x±y = (x0±y0) +

n
∑

i=1

(xi±yi)εi + (xn+1 + yn+1)δ. (7)

In this paper, we consider affine arithmetic with modified
multiplication (AAM)[5] and affine arithmetic with nar-
rowest multiplication (AAN)[6].

The non-existence test for Eq.(1) with m = 0 proposed
in [3] can be easily used for Eq.(1) with m > 0 as follows:

Theorem 2.1 [3] Let f : D ⊂ Rn+m→Rn, and let I ∈
Rn+m ⊂ D be an affine form vector. If

0 < f (I) (8)
holds, the solution of Eq. (1) does not exist in I.

3. All solution algorithm using affine arithmetic

In this section, we present an existence theorem for a
solution of Eq.(1) using AA, and we propose an all solution
algorithm for Eq.(1).

We propose an existence theorem for a solution of Eq.(1)
using AA as follows:

Theorem 3.1 Let f : D ⊂ Rn+m → Rn，c ∈ Rn+m, s ∈

Rm
+

, and t ∈ Rn
+
．Let W ∈ R(n+m)×n and V ∈ R(n+m)×m be

2012 International Symposium on Nonlinear Theory and its Applications
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012

- 419 -

composed of the left n columns and right m columns of
an (n + m)-dimensional non-singular matrix, respectively.
Let diag(t) ∈ Rn×n and diag(s) ∈ Rm×m be the diagonal
matrices

diag(t) =



















t1 0
. . .

0 tn



















(9)

and

diag(s) =



















s1 0
. . .

0 sm



















, (10)

respectively. Let ε(n) ⊂ Rn and ε(m) ⊂ Rm be the affine form
vectors

ε(n)
= (ε1, · · · , εn)T (11)

and
ε(m)
= (εn+1, · · · , εn+m)T, (12)

respectively. If R ∈ Rn×n is a non-singular matrix and

ε(n) − diag−1(t)R f (c +Wdiag(t)ε(n)
+ Vdiag(s)ε(m)) ⊂ ε(n)

(13)
holds, then there exists a solution for Eq.(1) not only in

affine form vector c +Wdiag(t)ε(n)
+ Vdiag(s)ε(m) but also

in c+Wdiag(t)ε(n) −R f (c+Wdiag(t)ε(n)
+Vdiag(s)ε(m))+

Vdiag(s)ε(m).

Although V and W have optionality in Theorem 3.1, the
simplicity of an existence guarantee of a solution is consid-

ered, and it is set as follows. Let V ∈ R(n+m)×m be composed
of an orthonormal basis that spans the null space of f ′(c),
i.e.,

{

f ′(c)V = O,
VTV = E,

(14)

where O is an n×m zero matrix and E is an m×m identity

matrix. Let W ∈ R(n+m)×n be composed of an orthonormal

basis that spans the null space of VT, i.e.,
{

VTW = Õ,

WTW = Ẽ,
(15)

where Õ is an m×n zero matrix and Ẽ is an n×n identity
matrix.

Similarly, although s and t have optionality, they must

be determined such that the domain c + Wdiag(t)ε(n)
+

Vdiag(s)ε(m) includes interval I ∈ Rn+m arising from the
division in the all solution algorithm. In order to take the
optimal domain, let si be the length of the projection of I to
the i-th column vector of V , i.e.,

si =

n+m
∑

j=1

rad(I j)|V j,i|, (i = 1, . . . ,m), (16)

where rad(I j) is the radius of the interval I j. and let ti be
the length of the projection of I to the i-th column vector of
W, i.e.,

ti =

n+m
∑

j=1

rad(I j)|W j,i|, (i = 1, . . . , n). (17)

A conceptual diagram is shown in Fig.1. Fig.1 shows that
the affine form vector I′ includes the test domain I of the
interval vector using V , W, s, and t. Note that the hyper-
parallelohedron represented as the affine form vector with
V , W, s, and t cannot be represented by an interval vector.

Using the proposed existence theorem 3.1 and the non-
existence test 2.1, we propose an all solution algorithm us-
ing AA as follows:

c

V

W

I

I′

c + Vdiag(s)

c +Wdiag(t)

Figure 1: Conceptual diagram of the test domain

Algorithm 3.1 Let f : D ⊂ Rn+m → Rn, and let the
hyper-rectangular domain T ⊂ D be the initial domain of
search.

Step 1: The list L of the search intervals is initialized as
L = {T }.

Step 2: If L is empty, end. If not, the head element of L is
defined as I. I is deleted from L.

Step 3: If 0 < f (I) holds, the solution does not exist in I;
go to Step 2.

Step 4: Let c = mid(I), where mid(I) is the midpoint of the
I. If 0 < f (c)+ f ′(I)(I − c) holds, the solution does
not exist in I; go to Step 2.

Step 5: Let interval vector I be transformed into an affine
form vector. If 0 < f (I) holds, the solution does
not exist in I; go to Step 2.

Step 6: Calculate V ∈ R(n+m)×m from Eq.(14).

Step 7: Calculate W ∈ R(n+m)×n from Eq.(15).

Step 8: Let R≃(f ′(c)W)−1. If it does not exist at all, go to
Step 12.

Step 9: Calculate s ∈ Rm and t ∈ Rn from Eq.(16) and
Eq.(17), respectively.

Step 10: Let t′
i
= max[ti, max

β∈{−1,1}
{2R f (c + V js jβ)}i], i =

1, . . . , n, and j = 1, . . . ,m. Let I′ = c +

Wdiag(t′)ε(n)
+ Vdiag(s)ε(m).

Step 11: If ε(n) − diag−1(t′)R f (I′)⊂ε(n) holds, there ex-

ists a solution in I′; go to Step 2. If ε(n) −

diag−1(t′)R f (I′)∩ ε(n)
= ∅ holds, the solution does

not exist in I′; go to Step 2. Otherwise, go to Step
13.

Step 12: Let the affine form vector I′′ = I′ − R f (c +

Wdiag(t)ε(n)
+ Vdiag(s)ε(m)) be transformed into

the interval vector. Let I = I ∩ I′′. I is divided into
two intervals I1 and I2, and they are added to the
tail of L. Then, go to Step 2. �

In this algorithm, the affine form vector I′, which wraps
the test domain I, is parallel to each column vector of V ,
that is, the linearized variety of the expected solution, and
highly accurate AA is employed for the existence guaran-
tee of a solution. Therefore, the proposed algorithm is ex-
pected to be more efficient than the conventional method.

4. Numerical Examples

In this section, to verify the efficiency of the proposed
method(Algorithm 3.1), some numerical examples are im-
plemented for the following algorithms.

- 420 -

Algorithm A An algorithm including an existence test us-
ing IA and three non-existence tests using IA.

Algorithm B An algorithm including an existence test us-
ing AAM, two non-existence tests using AAM, and two
non-existence tests using IA(Algorithm 3.1).

Algorithm C An algorithm including an existence test us-
ing AAN, two non-existence tests using AAN, and two
non-existence tests using IA(Algorithm 3.1).

Algorithm D An algorithm including two existence tests,
one using AAM and the other using IA, two non-existence
tests using AAM, and three non-existence tests using IA.

Algorithm E An algorithm including two existence tests,
one using AAN and the other using IA, two non-existence
tests using AAN, and three non-existence tests using IA.

Our computer environment has the following specifica-
tions. CPU: Pentium Dual-Core 2.0 GHz, memory: 2.5
GB, OS: Free BSD 6.3, and compiler: g++ 3.4.6. In Ta-
bles 5 and 6, the notation “—” indicates that memory over
occurred.

Experiment 4.1 We consider the nonlinear equations
{

vin − 3.2g1(v1) − (v1 + v2) = 0,
g1(v1) − g2(v2) = 0, (18)

where
{

g1(v1) = 0.43v3
1
− 2.69v2

1
+ 4.56v1 + α1,

g2(v2) = 2.5v3
2
− 10.5v2

2
+ 11.8v2 + α2,

(19)

which is derived from [2], and g1 and g2 are fluctuated
with α. First, α is fixed at 0, that is, Eq.(18) is one-
parameter dependent. For the initial domain (vin, v1, v2) ∈
([0, 20], [0.5], [0, 5]), the number of searched domains and
the computation time for each algorithm are listed in Ta-
bles 1 and 2, respectively. Next, α is considered to
be in an internal, that is, Eq.(18) is three-parameters
dependent. For the initial domain (vin, v1, v2, α1, α2) ∈
([0, 20], [0.5], [0, 5], [−0.05, 0.05], [−0.05, 0.05]), the num-
ber of searched domains and the computation time for each
algorithm are listed in Tables 3 and 4, respectively. �

Table 1: Number of searched domains of the efficiencies
for Eq.(18) with (α1, α2) = (0, 0)

Number of searched domains
A B C D E
166595 4857 3560 4857 3560

Table 2: Computation time of the efficiencies for Eq.(18)
with (α1, α2) = (0, 0)

Computation time(s)
A B C D E

4.048×101 2.487×100 5.605×100 2.956×100 5.966×100

Table 3: Number of searched domains of the efficiencies
for Eq.(18) with (α1, α2) = ([−0.05, 0.05], [−0.05, 0.05])

Number of searched domains
A B C D E
234329 44392 15208 1402 845

Table 4: Computation time of the efficiencies for Eq.(18)
with (α1, α2) = ([−0.05, 0.05], [−0.05, 0.05])

Computation time(s)
A B C D E

9.058×101 4.124×101 5.933×101 1.469×100 3.269×100

Experiment 4.2 We consider the m-parameter dependent
nonlinear equations
g(xi)+x1+x2+· · ·+xi+ j−i = 0, i = 1, . . . , n, j = 1, . . . ,m,

(20)
where

g(xi) = 2.5x3
i − 10.5x2

i + 11.8xi.

Let the initial domain be xk = [−2.0, 2.0](k = 1, . . . , n+m),
and let n and m vary. First, let m = 1, that is, Eq.(20) is
one-parameter dependent. For n ∈ {2, . . . , 11}, the number
of searched domains and the computation time for each al-
gorithm are listed in Tables 5 and 6, respectively. Similarly,
let m = 2, 3, 4, and 5, that is, Eq.(20) is two, three, four, and
five-parameter dependent, respectively. For m ∈ {2, 3, 4, 5},
the number of searched domains for each algorithm are
listed in Tables 7, 9, 11 and 13, respectively. The corre-
sponding computation time for m ∈ {2, 3, 4, 5} are listed in
Tables 8, 10, 12 and 14, respectively. �

Table 5: Number of searched domains of the efficiencies
for Eq.(20) with m = 1

n Number of searched domains
A B C D E

2 68 75 69 75 69
3 7562 510 369 510 369
4 49621 3108 2104 3108 2104
5 620189 24677 15765 24677 15765
6 2865907 122923 75200 122923 75200
7 9170371 387857 256058 387857 256058
8 — 1069459 752765 1069459 752765
9 — 2236031 1907621 2236031 1907621
10 — 4492597 4481557 4492597 4481557
11 — 11256385 11256226 11256385 11256226

Table 6: Computation time of the efficiencies for Eq.(20)
with m = 1

n Computation time(s)
A B C D E

2 1.442×10−1 3.220×10−2 8.215×10−2 3.794×10−2 8.591×10−2

3 2.460×100 3.564×10−1 8.651×10−1 4.362×10−1 9.181×10−1

4 2.527×101 3.285×100 8.684×100 4.078×100 9.237×100

5 4.889×102 3.833×101 1.061×102 4.905×101 1.129×102

6 3.241×103 2.666×102 7.870×102 3.491×102 8.370×102

7 1.469×104 1.145×103 3.978×103 1.529×103 4.227×103

8 — 4.209×103 1.699×104 5.734×103 1.800×104

9 — 1.170×104 6.025×104 1.603×104 6.387×104

10 — 3.075×104 1.959×105 4.268×104 2.076×105

11 — 9.673×104 6.557×105 1.397×105 6.854×105

In all tables, Algorithm B is faster than Algorithm C and
Algorithm D is faster than Algorithm E, which shows the
low computational cost of AAM beats the high accuracy
of AAN. In Tables 2 and 6, Algorithm B is the fastest. In
Tables 4, 12, and 14, Algorithm D is the fastest. In Ta-
bles 8 and 10, Algorithm D is the fastest in n = 1 while
Algorithm B is the fastest in n ≥ 2. From these results,
algorithms including the proposed existence test using AA,
whatever these are with the one using IA or not, have less

- 421 -

Table 7: Number of searched domains of the efficiencies
for Eq.(20) with m = 2

n Number of searched domains
A B C D E

1 68 413 372 7 276
2 881939 6197 3065 6197 3065
3 — 69178 29585 69178 29585
4 — 544141 216512 544141 216512
5 — 3186594 1240287 3186594 1240287
6 — — 4879212 — 4879212

Table 8: Computation time of the efficiencies for Eq.(20)
with m = 2

n Computation time(s)
A B C D E

1 8.292×10−3 1.212×10−1 2.357×10−1 3.751×10−3 1.836×10−1

2 2.267×102 3.392×100 4.671×100 4.006×100 4.968×100

3 — 6.091×101 8.527×101 7.504×101 9.149×101

4 — 7.215×102 1.055×103 9.254×102 1.133×103

5 — 6.008×103 9.715×103 8.095×103 1.053×104

6 — — 5.741×104 — 6.279×104

Table 9: Number of searched domains of the efficiencies
for Eq.(20) with m = 3

n Number of searched domains
A B C D E

1 834 17664 8286 27 17
2 — 705042 263489 705042 263489

Table 10: Computation time of the efficiencies for Eq.(20)
with m = 3

n Computation time(s)
A B C D E

1 1.150×10−1 6.602×100 6.615×100 1.269×10−2 1.534×10−2

2 — 4.789×102 4.817×102 5.121×102 5.684×102

Table 11: Number of searched domains of the efficiencies
for Eq.(20) with m = 4

n Number of searched domains
A B C D E

1 14066 707392 248652 171 103

Table 12: Computation time of the efficiencies for Eq.(20)
with m = 4

n Computation time(s)
A B C D E

1 2.301×100 2.583×102 3.307×102 9.412×10−2 1.065×10−1

Table 13: Number of searched domains of the efficiencies
for Eq.(20) with m = 5

n Number of searched domains
A B C D E

1 436653 — — 1678 1323

Table 14: Computation time of the efficiencies for Eq.(20)
with m = 5

n Computation time(s)
A B C D E

1 7.556×101 — — 1.038×100 1.574×100

the numbers of searched domains and lower computational
time than the conventional algorithm(Algorithm A). Morti-
fyingly, the proposed existence test didn’t always beat the
conventional one. The reason why Algorithm D and E are
faster than Algorithm B and C is considered to be that the
existence test using IA was more accurate than that using
AA in some domains. However, the case that the proposed
existence test lose the conventional one is only low dimen-
sion. From Tables 8 and 10, it is considered that Algorithm
B is the fastest in high-dimensional problems. In order to
exemplify this, higher-dimensional case in Tables 12 and
14 will be experienced as the future work.

5. Conclusion

In this paper, a new all solution algorithm was pro-
posed for parameter-dependent nonlinear equations using
AA. For five all solution algorithms, some numerical exam-
ples were presented. We showed that an algorithm includ-
ing the proposed existence test using AA is more efficient
than the conventional algorithm, with the help of numer-
ical examples. However, an algorithm including only the
proposed existence test using AA was not efficient for all
problems. Accordingly, it is necessary to propose an effi-
cient existence test using AA and to propose an algorithm
including it.

References

[1] Andrade, M. V. A., Comba, J. L. D., Stolfi, J.: “Affine
Arithmetic”, INTERVAL’94，St.Petersburg(Russia)，
March 5-110 (1994)．

[2] Kanzawa, Y., Kashiwagi, M., Oishi, S.: “Al-
gorithm for finding all solutions of parameter-
dependent nonlinear equations with guaranteed ac-
curacy”，Electronics and Communications in Japan，
Vol.82, No.10, pp.33–39 (1999).

[3] Kikuchi, T., Kashiwagi, M.: “Elimination of non-
existence regions of the solution of nonlinear equa-
tions using affine arithmetic”，Proc. NOLTA2001,
(2001).

[4] Miyazima, S., Kashiwagi, M.: “Existence test for
solution of nonlinear systems applying affine arith-
metic”, Journal of Computational and Applied Math-
ematics, Vol.199, No.2, pp.304–309 (2007).

[5] Miyazima, S., Miyata, T., Shirai, T., Kashiwagi,
M.: “ On the Multiplication and the Division of the
Affine Arithmetic”，The Transactions of the Institute
of Electronics，Information and Communication En-
gineers，Vol.J86-A，No.3，pp.232–240 (2003).

[6] Miyazima, S., Miyata, S., Kashiwagi, M.: “On the
Best Multiplication of the Affine Arithmetic”，The
Transactions of the Institute of Electronics，Infor-
mation and Communication Engineers，Vol.J86-A，
No.2，pp.150–159 (2003).

- 422 -

