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Abstract—We investigate the effects of noise in drive

and/or response systems on generalized synchronization.

We show numerically that noise in a drive system can in-

duce synchronization in an unidirectionally coupled Lorenz

system, while noise in a response system disrupts the syn-

chronization. In addition, through experiments using cou-

pled semiconductor lasers with optical feedback, we ob-

serve that noise in a drive system enhances the synchro-

nization.

1. Introduction

There has been a lot of interest in the synchronization of

chaotic systems since the early work on synchronized mo-

tion in two coupled chaotic systems [1, 2, 3]. One reason

is that synchronization itself is an interesting phenomenon

induced by the nonlinear nature of systems. Moreover, it

has a variety of applications, especially in the field of se-

cure communications. Some of these applications are im-

plemented utilizing the generalized synchronization of cir-

cuit and/or laser systems in a drive-response configuration.

[4, 5, 6, 7].

With synchronization realized by using physical devices,

noise is inevitable and, therefore, it is important to take ac-

count of the effects of the noise on the synchronization.

For example, although synchronization occurs in a noise-

less system, intermittent desynchronization is induced even

with a small amount of noise or parameter mismatches in

a bubbling regime [8, 9]. On the other hand, noise is also

known to have counter effects, that is, common noise in-

duced synchronization [10, 11, 12, 13, 14, 15, 16]. In

this paper, we investigate the effects of noise on gener-

alized synchronization in a drive-response configuration

when noise is added to drive systems and/or to response

systems [17].

This paper is organized as follows. We focus on the

effect of noise on the synchronization of unidirectionally

coupled Lorenz systems in Sec. 2 and chaotic lasers in-

jected by another chaotic laser in Sec. 3. We provide a

summary in Sec. 4.

2. Lorenz systems

In this section, we consider the generalized synchroniza-

tion of a coupled Lorenz system in a drive-response con-

figuration as shown in Fig. 1. An auxiliary system, which

Figure 1: Unidirectionally coupled Lorenz systems in a

drive-response configuration. The auxiliary system is used

to detect synchronization.

is equivalent to the response system, is used to detect gen-

eralized synchronization [18, 19]. This system is described

by the following stochastic differential equations.

(drive)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẋd = σ(yd − xd),
ẏd = ρd xd − yd − xdzd + sdξd,
żd = −bzd + xdyd,

(response)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẋr = σ(yr − xr),
ẏr = ρr xr − yr − xrzr + kyd + srξr,
żr = −bzr + xryr,

(auxiliary)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẋa = σ(ya − xa),
ẏa = ρr xa − ya − xaza + kyd + srξa,
ża = −bza + xaya,

where ξd, ξr, and ξa are white Gaussian noise and indepen-

dent of each other (〈ξ2〉 = 1, and 〈ξiξ j〉 = 0 if i � j). k
is a coupling coefficient and sd and sr are the noise am-

plitudes for the drive and response (auxiliary) systems, re-

spectively. The other parameters are set at the following
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values : σ = 10, b = 8/3, ρd = 28.5, and ρr = 28.

An Euler-Maruyama method is employed to simulate noisy

Lorenz systems.

In the noiseless case (sd = sr = 0), the response sys-

tem can be synchronized with the drive system in the sense

of generalized synchronization when the coupling strength

exceeds a critical value. Figure 2 shows conditional Lya-

punov exponent, and the average drms and maximum

dmax values of the distances d (= |(xr, yr, zr) − (xa, ya, za)|)
between the response and auxiliary systems as a function

of the coupling strength k. drms and dmax become zero
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Figure 2: Generalized synchronization for a noiseless sys-

tem. (a) Conditional Lyapunov exponents and (b) the av-

erage drms and the max dmax distances are shown as a

function of the coupling strength k.

and the conditional Lyapunov exponent becomes negative

at almost the same coupling strength, k ∼ 9.3. It was ob-

served that generalized synchronization is achieved stably

when k > 9.3.

Secondly, we consider the effects of noise in the response

system on the generalized synchronization. Figure 3 (a)

shows the dependence of the distances (drms and dmax)

on the noise amplitude sr of the response (auxiliary) sys-

tem when k = 12.0. drms is an increasing function of the

noise amplitude and dmax also tends to grow as the noise

increases. This indicates that the noise of the response sys-

tem degrades the synchronization. Figure 3 (b) shows the

dependence of the distances (drms and dmax) on the cou-

pling strength k for sr = 10−3. The average drms and max-

imum dmax distances approach 0 at k ∼ 10 and k ∼ 30,

respectively. This indicates that even with response noise,

generalized synchronization can be achieved through inter-

mittent desynchronizations (10 < k < 30) while the cou-

pling strength becomes large.

Next, noise is added to the drive system. Examples of

the time evolution of distances are shown in Fig. 4 (b) and

(c) for small (sd = 10−2) and large (sd = 10) noise, respec-

tively. It is observed that drive noise can induce synchro-

nization. Figure 4 (a) shows the average distance drms and

the conditional Lyapunov exponent as a function of noise
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Figure 3: Distances between the coordinates of the re-

sponse and auxiliary systems when independent noise is

added to the response and auxiliary systems. The distance

dependence on (a) the noise amplitude sr when k = 12.0
and (b) the coupling strength k when sr = 10−3 are shown.

amplitude sd when k = 8.6, where generalized synchro-

nization does not occur without the drive noise. For large
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Figure 4: (a) Dependence of the average distance and the

conditional Lyapunov exponent on the noise strength of the

drive system when k = 8.6. Examples of the time evolution

of the distance between the coordinates of the response and

auxiliary systems are shown (b) when sd = 10−2 and (c)

sd = 10.

noise, drms is almost zero and the conditional Lyapunov

exponent is negative. We can say that generalized synchro-

nization is realized stably by adding noise to the drive sys-

tem.

Finally, we investigate the effects of drive noise when

there is also noise in the response and auxiliary systems.

Figure 5 (a) shows the dependence of drms and conditional

Lyapunov exponent on drive noise amplitude sd. For cer-

tain range of noise amplitudes, we observe that drms is

almost zero and the conditional Lyapunov exponents are
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negative, which indicates that generalized synchronization

occurs. The example distances shown in Fig. 5 (b) and (c)

illustrate desynchronization and synchronization for small

(sd = 10−2) and large (sd = 10) drive noise, respectively.
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Figure 5: (a) Dependence of the average distance and the

conditional Lyapunov exponent on the noise strength of the

drive system when k = 7.0 and sr = 10−3. Examples of

the time evolution of the distance between the coordinates

of the response and auxiliary systems are shown (b) when

sd = 10−2 and (c) sd = 10.

3. Laser system

We investigate the effects of noise on the synchroniza-

tion of a semiconductor laser induced by the injection of

chaotic signals from a drive laser. Figure 6 shows our ex-

perimental setup for the synchronization. We used three

Figure 6: Experimental setup for synchronization. The

abbreviations stand for the following: SL, semiconductor

laser; SLD super-luminescent diode, ATT, attenuator; PD,

photodetector; OSC, digital oscilloscope.

monolithically integrated chaos laser chips, each of which

consisted of a distributed-feedback (DFB) laser, two semi-

conductor optical amplifiers (SOAs) and a passive waveg-

uide. A high-reflective (HR) coating was employed to

achieve delayed optical feedback strong enough to obtain

chaotic behaviors of laser outputs. One laser chip had a

5 mm external cavity and was used as a drive laser, and

the others had 10 mm external cavities and were used as

a response laser and an auxiliary laser. The injection cur-

rents and the temperatures of the semiconductor lasers were

adjusted by a current-temperature controller (ILX, LDC

3902). The relaxation frequencies of the response and the

auxiliary lasers were set at 2.6 GHz by adjusting their in-

jection currents. We set the optical wavelength at 1550.030

nm for the response and auxiliary lasers by precisely con-

trolling the temperatures. To investigate the dependence of

the noise strength in a drive chaotic laser on the synchro-

nization, the output strength of a super-luminescent diode

(SLD), which can be regarded as an optical noise source,

was controlled by an attenuator and the outputs were in-

jected into the drive laser. The outputs of the drive laser

were injected into the response and auxiliary lasers. The

outputs of the response and the auxiliary lasers were con-

verted into electrical signals at photodetectors (New Focus,

1544B) and these signals were sent to a digital oscilloscope

(Tektronix, DPO 71694C).

First, without SLD injection, we set parameter values of

the drive laser such as the injection current and the temper-

ature so that the response and auxiliary lasers were weakly

synchronized. Example wave forms are shown in Fig. 7

(a), where the cross correlation is 0.665. Then, we in-

(a)

0 2 4 6 8 10

(b)

time (ns)

In
te

ns
ity

 [a
rb

.u
ni

ts
]

Figure 7: Temporal wave forms of the response and aux-

iliary lasers (a) without SLD and (b) with SLD (-30dB)

injection into the drive laser.

creased the noise of the drive laser by injecting the SLD

outputs. The cross correlations of the observed temporal

dynamics of the response and auxiliary lasers are shown

for various noise levels in Tab. 1. We can see that noise

increases the correlations and the highest correlation was

achieved when the attenuator’s level was -30 dB. Example

wave forms for −30 dB are shown in Fig. 7 (b).

4. Summary

We showed numerically and experimentally that the

noise of a drive system can enhance synchronization in a
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Table 1: Cross correlations between the response and aux-

iliary lasers for certain noise strengths.

noise strength (attenuator’s scale) cross correlation

no noise 0.665

-50dB 0.724

-40dB 0.728

-30dB 0.832

-20dB 0.825

-15dB 0.819

coupled chaotic system in a drive-response configuration.

Numerical simulations of a coupled Lorenz system showed

that the noise of a drive system can induce generalized syn-

chronization even in the presence of response noise, which

can disrupt the synchronization. In addition, our experi-

ments with semiconductor lasers showed that the noise of

a drive laser can enhance synchronization.
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