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Abstract– The experimental linear response spectrum 

of an auto-resonant (AR) intrinsic localized mode (ILM) in 
a driven 1-D cantilever array is composed of several 
resonances including a phase mode of the AR-ILM. This 
AR state is stable in a finite frequency range between the 
upper and lower bifurcation frequencies. Here we examine 
the robustness of the lower frequency point to lattice 
perturbations. In the intrinsic state the even linear localized 
mode (LLM) crosses the phase mode and the transition 
occurs when the phase mode intersects the odd symmetry 
band mode. When an impurity mode is introduced into the 
lattice near the even LLM it interacts with the phase mode, 
and the lower bifurcation frequency of the ILM is now 
shifted to the point where these two linear modes coalesce. 
 
1. Introduction 

 
As a driven mechanical oscillator becomes smaller in 

size, nonlinearity plays a more important role. In a 
micromechanical cantilever array nonlinearity plus 
discreteness can give rise to vibrational localization. Such  
an intrinsic localized mode (ILM), also called a discrete 
breather, has been predicted theoretically and observed 
experimentally.[1-4] These nonlinear localized modes 
have attracted attention both because of fundamental 
interest and also because of possible practical applications. 
[5-18] 

Experimentally, a stationary ILM can be maintained in 
steady state using a driver to compensate for damping.[5-
7] In this state the ILM is frequency locked, and a so 
called auto-resonance (AR) state is achieved where the 
driver frequency controls the ILM amplitude.[19-22] Such 
a stable state is only possible over a well defined 
frequency region[10, 16] and the two frequency 
boundaries are identified as bifurcation points.  

By measuring the linear response spectrum of an ILM 
as a bifurcation point is approached we have been able to 
characterize the underlying dynamics of the transition. 
[16] Two linear modes are observed, a phase mode and an 
even linear localized mode (LLM).[8] The phase mode 
amplitude diverges at both the upper and lower bifurcation 
points when its frequency intersects the driver frequency 
or its frequency intersects the highest frequency band 
mode. 

 The even-LLM crosses the phase mode near the lower 
bifurcation point without any interaction. In this paper, we 
introduce an additional impurity mode on the lattice to 
probe the robustness of the lower bifurcation point.  

 
2. Experiments 

Figure 1 shows the experimental set up for the pump-
probe measurement. The pump driver generates the ILM 
and keeps it in the AR state. The probe driver is used to 
apply a sinusoidal perturbation to the system. The 
displacement near the ILM is detected by a combination 
of the laser diode and a position sensitive detector, and 
recorded with a digitizer. The recorded signal is Fourier 
transformed to produce a spectrum. To have high 
resolution near the pump frequency, the signal is down 
converted using a mixer and a local oscillator. By 
changing the probe driver frequency step wise, and 
measuring perturbed spectra at these frequencies, a probe 
response spectrum is then deduced. This method is more 
tedious than the one we reported earlier [16], where we 
have used a lock-in amplifier instead of the digitizer. 
However, this method reveals the overall spectral 
response.   
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Fig. 1 Experimental set up for the pump-probe measurement 
with a uniform probe perturbation. The cantilever array is 
located in a vacuum chamber (not shown). Pump and probe 
drivers excite the PZT, which shakes the array to produce the 
acceleration force on it.  The pump driver maintains the ILM. A 
diode laser is focused on one cantilever near the ILM. The 
position sensitive detector (PSD) converted the displacement 
signal to voltage. After the signal frequency is down converted 
to produce fine spectral resolution, the cantilever displacement is 
recorded. The weak probe driver is used to apply a sinusoidal 
perturbation to the array.  
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Figure 2(a) shows the two dimensional map made from 
such spectra. There are two lines crossing at the center 
whose position is on the line FFT probef f=  and 

2FFT pump probef f f= − . Intensities of these lines are plotted 
on Fig. 2(b). They consist of the response spectrum and a 
four-wave mixed spectrum.  We can confirm that the 
curves in Fig. 2(b) are the response to the probe 
perturbation, because no other signal in Fig. 2(a) except 
structures on lines FFT probef f=  and 2FFT pump probef f f= − . 
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Fig. 2 (a) FFT spectra of the ILM sidebands under fixed 

pump excitation at 142 kHz and various probe excitation 
frequency. Spectra are mapped from low to high according to the 
probe frequency. Vertical bar is the ILM signal. Crossing lines 
represent signal caused by the probe driver. Pump level is 15Vpp, 
and probe level is 20mVpp. The dark region at 142 kHz is due to 
the AR-ILM vibrating at the pump frequency. (b) Probe response 
spectrum obtained from the line FFT probef f=  and four-wave 

mixing spectrum from the line 2FFT pump probef f f= − . Two 
sideband peaks symmetrically located to the pump frequency is 
due to the phase motion of the AR-ILM. 
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Fig. 3 Experimental set up for the pump-probe measurement 
with an asymmetric perturbation.  An IR laser beam is 
modulated by an acousto-optic (AO) modulator at frequency 

pump probef f− , and irradiates one side of the ILM. The 

displacement signal is analyzed either by a lock-in amplifier 
with a reference frequency at probef or by the digitizer.  

The pair of sideband is due to the phase mode of the 
ILM. It is the free vibration solution which is monitored 
by the probe. As we reported previously, this method can 
only measure odd shaped modes. This is because the 
uniform perturbation produced by the probe cannot excite 
the even mode. 

To see the even-mode clearly, we have added to the 
experiment a sinusoidal modulated laser beam that can 
heat a local spot on the array, producing a modulated 
impurity mode, which breaks the local symmetry of the 
ILM.  Now both even symmetry and odd symmetry modes 
can be observed. Figure 3 shows the experimental set up. 
Because of a frequency bandwidth of the AO modulator, 
we modulated the beam power at the difference 
frequency mod pump probef f f= − , which is well below the 
probe frequency itself. The time dependence of the 
impurity mode induces both a lateral and breathing motion 
of the ILM. By these processes, all linear modes are 
observable by this method. 

Figure 4 shows the map made from the digitizer signal 
by step changing the modulation 
frequency mod pump probef f f= − . Starting from the bottom of 
the figure the two dark narrow lines diverging from a 
point represent the signal caused by the modulated laser 
beam.  In this case, clear signal is only observed on these 
two lines modFFT pumpf f f= ± indicating that signals on these 
are due to the probe perturbation, excepts some fixed 
frequency noise that were recorded as vertical lines.  The 
noise might be a spurious signal from the pump driver, or 
other fixed frequency source. 
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Fig. 4 FFT spectra versus the modulation frequency of the IR 
laser beam. Two lines at modFFT pumpf f f= ±  are response signals 
from the laser modulation. Thick vertical line is the ILM and 
other weak vertical lines are due to noise. The pump frequency 
was fixed at 141.35 kHz and the modulation frequency was step 
increased, then the cantilever motion of the ILM was recorded. 
The soft focused IR laser beam directed at one side of the ILM 
caused its asymmetric deformation and breathing vibration.   
 

Figure 5 shows the pump frequency dependence of the 
probe spectra measured by the laser local heating 
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perturbation.  The pump frequency was changed from the 
middle of the AR region down to the low frequency 
bifurcation point. The spectra are aligned from top to 
bottom by the pump frequency.  The strong sideband pair 
near the center is due to the phase mode and its partner, as 
also shown in Fig. 2. Weaker resonance peaks outside of 
the phase mode approach the phase mode as the pump 
frequency is decreased. The strongest of these is the even 
LLM. The weaker one is the highest frequency band mode.  

At the bottom of this figure, just before the ILM 
becomes unstable and disappears, the phase mode and the 
even mode mix and the resultant amplitude increases 
considerably in height. 
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Fig. 5 Local probe response versus frequency difference for 
various pump frequencies, from 140.85 to 141.70 kHz with 50 
Hz step from bottom to top. The soft focused, modulated IR 
laser beam is directed to one side of the ILM. The broken 
symmetry of the ILM makes the odd phase mode and the even 
LLM interact, as shown in the bottom trace (solid). The 
modulation frequency modf  is scanned and the PSD signal is 
detected by the lock-in amplifier with the reference frequency at 

modprobe pumpf f f= ± . The sidebands ~ 425Hz±  are the same as 
in Fig. 2. The broken symmetry even LLM is identified. When 
those two modes are coincides at the bottom (solid curve), the 
peak heights rapidly increase, and the ILM becomes unstable. 
Pump level is 14.2Vpp, and probe IR laser power is 10mW in 
average.  
 
4. Discussions 
 

In an earlier work we have shown that for the pure 
lattice case the lower bifurcation point occurs when the 

partner of the odd phase mode intersects the top most odd 
band mode of the lattice.[16] The current measurements 
show that for a perturbed lattice the result is somewhat 
different. By breaking the vibrational symmetry of the 
ILM with the introduction of an impurity mode the 
bifurcation frequency is shifted so that it now occurs at a 
higher frequency point where the even LLM and the odd 
phase mode coalesce. How is this possible? 

To address this question first consider the translational 
motion of an ILM though the unperturbed lattice. It 
requires the ILM to change it shape from odd symmetry to 
even symmetry and back again as it passes through a unit 
cell. It is the difference in frequency between these two 
eigenvectors that finally traps the ILM in its most stable 
symmetry state as the localization strengthens. But at the 
lower bifurcation point the ILM envelope is fairly broad 
and hence only weakly trapped. In a pure lattice, an odd 
shaped phase mode and an even shaped LLM do not 
interact. However, the laser spot makes a modulated 
impurity mode. When this spot is placed near the ILM, 
breaking its local symmetry, the phase mode and the even-
LLM pick up similar symmetry components from the 
resulting lateral oscillation and a phase oscillation of the 
ILM. The lower traces in Fig. 5 clearly show the mixing 
of these two modes. The ILM starts vibrating laterally at 
larger amplitude. Finally, its range exceeds the lattice 
constant, it is no longer locked to the driver and 
disappears.  

 
5. Summary 
 

The local laser modulation method breaks the 
symmetry of the even-LLMs associated with a driven AR-
ILM, so that both are observable. As the frequency of the 
ILM is shifted toward the lower bifurcation point the 
even-LLM approaches the odd phase mode of the AR-
ILM. The bifurcation point occurs when these two 
localized modes coalesce. The new transition frequency is 
shifted, from that of the pure lattice case, due to the 
presence of the symmetry breaking impurity mode. 
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