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Abstract

In this paper, a multilayered cylinder filled with meta-
materials is studied. General formulas of electromagnetic
fields in each region are derived using the eigenfunction
expansion method. For an infinite line source, the image
property is observed when the radius of this cylinder is
much larger than the wavelength. The distributions of
electromagnetic fields are presented when a line source
is placed near a two-layered cylinder alternately filled
with double negative (DNG) and double positive (DPS)
material. The electric field and energy in the presence of
a cylinder with very small radius have been investigated.

1. Introduction

In 1968, Veselago theoretically studied wave charac-
teristics in a special medium whose permittivity and
permeability are both negative simultaneously [1]. The
hypothetical materials are explored systematically until
the split-ring resonator (SRR) structure was proposed
[2] and experimentally verified [3]. The double negative
(DNG) material has shown special optical properties, and
could lead to a perfect lens [4]. For EM waves propa-
gating through a stratified DNG medium, reflection and
refraction of the waves were formulated by Kong [5]. The
objective of this paper is to extend the existing application
from planar structures to cylindrical structures, so as to
gain more insight into the hybrid effects of metamaterials
and cylindrical curvature.

2. Formulations

Consider an N -layered infinitely-long cylinder situated in
free space (ε0, µ0), as depicted in Fig. 1. In each layer, it is
filled with DNG or DPS homogeneous material of different
permittivity and permeability. In the following analysis the
time dependence, e−jωt, is suppressed. The permittivity
and permeability of material in region f (f = 1, · · ·N) are
denoted as follows:

εf = u | εf |, (1a)
µf = u | µf |, (1b)

An incident wave of transverse electric (TE) or trans-
verse magnetic (TM) polarization is assumed to illuminate
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Fig. 1: Geometry of a multilayered cylinder with different materials.

the layered cylinder in free space at an arbitrary oblique
angle. In the cylindrical coordinates system, the vector
wave functions are given in [6], and rewritten as follows:

M (p)
n (kz) =

[
jn

ρ
B(p)

n (kρρ) ρ̂ − dB
(p)
n (kρρ)
dρ

φ̂

]
×ej(nφ+kzz), (2a)
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[
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]
, (2b)

where B
(p)
n (kρρ) represents the cylindrical Bessel func-

tions of order n, the superscript p equals 1 or 3 represent-
ing the Bessel function of the first kind and the cylindrical
Hankel function of the first kind, and k2 = k2

ρ + k2
z . If

the electromagnetic waves are normally incident on the
surface, the vector wave functions expressed in (2a) and
(2b) can be simplified as:

M (p)
n (k) =

[
ρ̂

jn

kρ
B(p)

n (kρ) − φ̂
dB

(p)
n (kρ)
kdρ

]
ejnφ, (3a)

N (p)
n (k) = ẑB(p)

n (kρ) ejnφ. (3b)

By using eigenfunction expansion method, the electric
and magnetic fields in the region f (f = 1, · · ·N − 1) are
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formulated as follows:

Ef =
∞∑
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}
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where anf , bnf , a′
nf and b′nf are the unknown expansion

coefficients.
For the out-most region (i.e., Region 0) and the inner-

most region (i.e., Region N), the electromagnetic fields
can be expanded as:

E0 = Ei + Es

= Ei +
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]
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and
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For the electromagnetic fields in all the regions, we
have the same longitudinal wave vector kz due to phase
matching condition, whereas the radial wave vector kρf

is discontinuous.
In the above formulas, the expansion coefficients, anf ,

bnf , a′
nf , and b′nf , can be determined by enforcing

the boundary conditions of the tangential electric- and
magnetic-field components on the cylindrical interfaces at
ρ = rf (where f = 0, 1, · · · , N − 1):

ρ̂ ×
[

Ef

Hf

]
= ρ̂ ×

[
Ef+1

Hf+1

]
. (7)

A recursive system for the coefficients can be finally
obtained [6]:

Cf+1 = T fCf (8)

where [Cf ] is defined by:

Cf =
[

anf , bnf , a′
nf , b′nf

]T
(9)

and the transmission matrix in the eigen-expansion do-
main is given by:

T f = F−1
f+1F f (10)

and the parameter matrices F f and F f+1 are derived from
the boundary conditions. All the scattering coefficients can
be determined by the recursive algorithm as in Eq. (8).

For an infinitely long line source placed at (ρ0, φ0) and
parallel to the cylinder, the incident electromagnetic wave
can be expressed by

Ei = − k2I

4ωε0

∞∑
n=0

(2 − δn0) H(1)
n (kρ0) N (1)

n (k) e−jnφ0 ,

(11a)

Hi = −kI

4j
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n=0

(2 − δn0) H(1)
n (kρ0) M (1)

n (k) e−jnφ0 ,

(11b)

where I stands for the amplitude of electric current.

3. Numerical Results
To verify the correctness of the formulations deduced
above, we firstly calculate the distant scattering pattern
of a two-layed cylinder filled with different DPS materials
and radiated by the parallel line source. The geometry is
shown in Fig. 2. The radii of two layers from inside to
outside are a = 0.25λ and b = 0.3λ, respectively. The
corresponding relative permittivity are εr1 = 4.0, and
εr2 = 1.0. The relative permeability of two layers are
µr1 = µr2 = 1.0. The line source is placed at a distance
of ρ0 = 0.5λ from the center of the layered cylinder,
and an observation angle φ0 of 0 degree. The distant
scattering pattern can be obtained by the asymptotic
form of large-argument Hankel functions, which is shown
in Fig. 3, respectively. For the reference, the integral-
equation solutions, which come from [7], are also given.
An excellent agreement is observed. This partially verified
the correctness of our derived theoretical formulas and the
developed codes.
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Fig. 2: Geometry of a two-layered cylinder with DPS materials.

First of all, radiation by a line source in the presence
of this cylinder is considered. The different radii a are
also set. The line source is located at ρ1 = 2.3λ and
φ0 = 0, where ρ1 is the distance from the surface
of the cylinder. Then, the normalized amplitudes of
the time-averaged Poynting power, which is denoted by
〈S〉 = 1

2Re (E × H∗), are shown in Fig. 4-Fig. 5. From
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Fig. 3: Scattering pattern of a nearby parallel line source in the
presence of a two-layered cylinder with DPS materials.

Fig. 4, we observe that a facula is formed inside the
cylinder. The formation of the facula is due to the cylinder
with (−ε0,−µ0) is not a focusing system. This summary
point can be verified by using the theory of arbitrary
coordinate transformations [8]. According to the theory,
if we keep the wave scattering properties unchanged after
the geometrical dimension (e.g., the radius) is changed,
we have to adjust µ and ε accordingly. When the physical
problem is changed from a perfect slab lens to a perfect
cylindrical lens, the permittivity and permeability in the
lens are required to be a function of position. Hence, the
cylinder with (−ε0,−µ0) cannot focus the light, and it
will still reflect waves. However, a phenomenon of focus
shown as in Fig. 5 can be obtained when the electric size
of calculated problem is far larger than the wavelength.

Fig. 4: Normalized amplitudes of the time-averaged Poynting power
for a one-layered cylinder with (−ε0,−µ0) and a = 8.5λ.

Further, we study the field distribution in the presence
of cylinders with small radii. In Fig. 6, the focula denotes
the line source which is placed 0.2λ away from the axis of
the cylinder (i.e., the origin of the system). It can be seen
that the amplitude of the electric field are modified at the
position where the cylinder is placed. The wave has been
amplified greatly at the position occupied by the cylinder
compared to the case that the cylinder is removed. In
Fig. 7, the power distribution, between the source and
scatterer, gradually converges to the cylinder’s position.
Afterwards, on the right hand side of the cylinder, there
still exists some power. It shows that, on the right hand
side, the original power distribution without the presence

Fig. 5: Normalized amplitudes of the time-averaged Poynting power
for a one-layered cylinder with (−ε0,−µ0) and a = 150λ.

Fig. 6: The amplitude of electric field for a one-layered cylinder with
(4ε0, µ0) and a = 0.05λ.

of the scatterer has been greatly modified and some
portions of the power have even been shifted beyond the
cylinder. It can be explained by that the electrically small
cylinder is at resonance and the induced moments cause
the shift of the power. A cylinder with DNG material
and smaller radius is thus of partiuclar interest as shown
in Fig. 8. In order to investigate the resonance effects
more clearly, we put the line source closer to the cylinder
with a distance of 0.15λ. It is interesting to find that
the electric field retained inside the cylinder is much
bigger than that of the incidence, and the electric field
near the cylinder is also enhanced. This phenomenon is
quite potential and distinguished compared to the result
of normal DPS cylinder with small radius.

Finally, the real parts of field components, Hρ and
Hφ, scattered by a two-layered cylinder filled alternately
with DNG and DPS material are shown in Fig. 9and
Fig. 10. In this case, a line source is placed at ρ0 = 9.5λ
and φ0 = 0, the radii of two layers are r1 = 8λ and
r2 = 5λ, respectively. The layer 1 is filled with DNG
material (−ε0,−µ0) and the layer 0 and 2 are filled
with (ε0, µ0). As we expect, the tangential components
Hφ is equal on the layered interfaces. Another tangential
component of Ez is also continuous across the interfaces.
While the normal component Hρ is not, which satisfies by
default the continuity of normal component of magnetic
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Fig. 7: The amplitude of Poynting power for a one-layered cylinder
with (4ε0, µ0) and a = 0.05λ.

Fig. 8: The amplitude of electric field for a one-layered cylinder with
(−4ε0,−µ0) and a = 0.01λ.

flux density B across the interfaces between the DNG and
DPS materials.

4. Conclusion

In this paper, we applied the eigenfunction expansion
method to generally express the fields in a multilayered
cylinder filled by a double negative medium and a double
positive medium. The eigenfunction expansion coefficients
are determined by enforcing the tangential electric and
magnetic field components continuous at the interfaces.
The imaging of a line source by this cylinder is observed
when the radius r � λ. The electric field and power of
those cylinders with small radii, filled with DNG and
DPS materials, have been investigated. Moreover, field
components for a two-layered cylinder alternately filled
with DNG and DPS materials are calculated. The normal
component is found to be discontinuous at the boundaries,
and the tangential components are not, which agrees, as
expected, with the boundary conditions.
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Fig. 9: The real part of Hρ component of electromagnetic wave
propagating through a two-layered cylinder with DNG and DPS
materials.

Fig. 10: The real part of Hφ component of electromagnetic wave
propagating through a two-layered cylinder with DNG and DPS
materials.
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