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Abstract 

 
Model-based inversion (MBI) is robust and stable when the 
inverse scattering problem is ill-posed. However, it poses 
large computational burden, making the inversion inefficient. 
This paper introduces a 2-D electromagnetic MBI, in which 
the computation time is improved using an efficient 
implementation of the source-type integral equation. 
Employing simulated annealing as the optimization algorithm 
in the proposed MBI method, several examples demonstrate 
accuracy of the method in the reconstructions of different 
object profiles. 
 

1. INTRODUCTION 
 
Inverse scattering problem is to reconstruct properties of an 
object from the scattering data. On the contrary, the goal in a 
forward problem is to generate the data scattered from a 
known medium. In electromagnetic theory, the inversion 
methods aim at reconstructing the complex permittivity 
profile of objects using the scattering field. They may be 
classified into two categories [1]. The first category includes 
all direct inversion methods, such as diffraction tomography 
[2], which extract the profile directly by applying a 
mathematical operator to the measured scattering field.  
 
The second category comprises the so-called model-based 
inversion (MBI) methods. They rely on an optimization 
procedure in which the profile of a medium is reconstructed 
by optimizing a suitable cost function [3]-[8]. The value of 
this function indicates the closeness between the observed 
(measured) data and the model data that is obtained from the 
solution of the forward scattering problem. The MBI provides 
superior performance over the direct inversion when the 
inverse problem is ill-posed [1]. The nonlinearity of the 
forward problem, inadequacy of the scattered data and 
presence of noise in the data make an inversion ill-posed. The 
MBI, however, suffers from lack of efficiency due to two 
reasons: the need to apply global algorithms for optimizing 
the cost function and the intensive computation required for 
solving the forward problem. This paper tries to alleviate the 
second reason. 
 
The solution to the forward problem in MBI, mostly, involves 
the use of numerical methods that are computationally 
intensive, such as the method of moment (MOM) [4]-[7]. We 
have, recently, proposed an efficient method, which evaluates 
the source-type integral equation (STIE) for 2-D forward 
problems [9]. The present paper reports the implementation of 

this method in the 2-D MBI problems and the merits of its 
application. The cost function is defined as the mean square 
error (MSE) between the observed scattering field and those 
calculated from the forward model (i.e. STIE). Two global 
optimization methods, used prominently in the MBI, are 
genetic algorithms (GA) [5], [6] and simulated Annealing 
(SA) [7], [8]. GA and SA have the advantages that they 
require only the value of the cost function and they are simple 
to implement. In this paper, the SA algorithm is employed to 
minimize the MSE function. 
 
Several reconstruction examples are presented to demonstrate 
the performance of the proposed 2-D MBI method. The 
observed data is synthetic, in a sense that the FDTD method is 
used to generate the observed scattering field at different 
points around objects. The results show our efficient MBI 
technique provides enough accuracy in the reconstructions of 
various object profiles. 
  

2. MODEL-BASED INVERSION METHOD 
 
The 2-D MBI method reconstructs the object profile by 
optimizing a cost function. To formulate the problem, 
consider the geometry of a 2-D electromagnetic problem 
shown in Fig. 1, where an inhomogeneous object of finite-
size is located in a background medium. Under TM 

excitation, the source-type integral equation for a 2-D 

problem gives the scattered field )(rscay  at any point 

specified by vector r = (x, y) as 
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where )(rincy  is the incident field produced by sources in the 

absence of the object, )(ry is the total field, )'( rr-G  is 

known as Green function and Á defines the object region (the 
scattering region). The object profile O(r) and the wave 
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Figure 1. The geometry of a 2-D electromagnetic problem 
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number 0 for the background medium are given by 
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where er and s denote the relative permittivity and 
conductivity of the object, 

wseeee jBBBrB +== ˆˆ 0 denotes the complex permittivity 

of the background medium and w is the angular frequency. It 
is assumed that the object and background medium are 
nonmagnetic, i.e. their permeability is m0. 
 
The cost function is the MSE between the measured data and 
those calculated from Eq. (1). Let 
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observed (measured) at N locations rn = (xn, yn) around the 
object. The observed data can be at different frequencies as 
well; but, single frequency data is viewed in this paper. 
Furthermore, let  Á be discretized into M rectangular cells, 
whose size is chosen small enough so that er and s can be 
considered constant inside the cells. Introducing the 
parameter point ( )MrMrr sesese ,,,,,, 2211=x , the MSE 

function is defined as 
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The field )( n
sca rxy is obtained from the forward model (Eq. 

(1)) for the profile specified by the parameters x. The 
minimization of f(x) converges to the actual constitutive 
parameters of the object. This is performed using the SA 
algorithm. 

A. Forward Model 
The STIE equation (1) forms the forward model for the MBI. 
Because the field inside the object is a function of itself, this 
equation results in a nonlinear mapping from the object 
profile to the scattered field. Therefore, the solution to the 
STIE is not trivial and, mostly involves numerical solutions, 
such as the MOM, which need intensive computation. An 
efficient way to solve (1) is to use the Born approximation, in 

which the incident field )(rincy approximates the total field 

)(ry inside the object. Such an approximation and its variant, 

Born series, has limited range of validity when the contrast 
and/or size of the scatterer is small [2]. 
 
We have devised an efficient STIE solver [9] that alleviates 
low contrast/small size requirements of Born series. Starting 
from a low contrast profile for the complex permittivity of the 
scatterer, the method obtains iteratively the field by 
incremental change of the object profile towards the real one. 
Let Ok(r) denote the profile at the kth iteration. The object 
profile is modified to Ok+1(r) at the next iteration and the field 
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Considering O0(r) = 0 (that corresponds to the profile of the 
background medium), the second and third integrals are zero 
for k=0. The algorithm can be, therefore, started knowing the 
incident field. Also, the modification of Ok(r) with regard to k 
should be nonlinear. We use exponential increment in 
accordance with difference equation )()1( krkr aee =D + for the 

relative permittivity and )()1( kk bss =D + for the conductivity. 

B. Simulated Annealing Algorithm 
 
Metropolis algorithm [10] provides a simple method for 
simulating the physical annealing process of solids. In an 
annealing process, the temperature of a solid in a heat bath is 
initially increased to a maximum value at which the solid 
melts and becomes disordered. The temperature is then 
lowered slowly so that the system at any time is 
approximately in thermal equilibrium. As cooling proceeds, 
the system becomes more ordered and approaches a frozen 
ground state (minimum energy state) at temperature zero. It is 
presumed that the initial temperature of the solid is 
sufficiently high and the cooling is carried out adequately 
slow; otherwise the system become quenched forming defects 
or freezing out in meta-stable states (i.e. trapped in a local 
energy state). 
 
Making an analogy between the system energy and the value 
of a cost function, simulated annealing algorithm can be 
viewed as Metropolis algorithm, applied for minimization of 
the function [10]. In every iteration (k) of the SA, the current 
point xk-1 is perturbed slightly to generate a new point xk. If 
the resulting change in the cost function 1--=D kk fff is 

negative, i.e. the modified cost is lower, the new point 
approaches the optimum and is accepted. If the change is 
positive, the new point will not necessarily be rejected and it 
will be accepted according to the Boltzmann probability 
distribution 

( )kk TfP D-= exp                                                              (5) 

where Tk plays the role of the temperature in the Metropolis 
algorithm. Random numbers between zero and one are 
generated for this purpose.  
 
Considering U[0, 1] as a uniform random number in the 
interval [0, 1], the SA algorithm, applied for the minimization 
of the MSE function in (3), can be described in pseudo 
language as follows: 

1. Initialize the temperature (T0). 
2. Generate a sample parameter point y and its MSE 

value f (y). 
3. Select the new point xk. Acceptance probability Pk(y) 

is calculated using (5). If Pk(y) > U[0, 1] then xk = y; 
otherwise xk = xk-1. 
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4. Whether the thermal equilibrium is achieved to 
update the temperature? If it is not, go to Step2. 

5. Decrease the temperature Tk. 
6. If stopping rule is satisfied, terminate the algorithm; 

otherwise go to Step2. 
 
Some Steps in the above algorithm need more elaboration. 
The initial temperature should be enough high so that all new 
points are, almost, accepted at the beginning. There are 
different strategies to determine T0. In our work, generating a 
number of points randomly before the start of SA , the initial 
temperature is set to the standard deviation of the function 
values at these points. Constant grains reD and sD  are 

randomly added to or subtracted from the permittivity and 
conductivity of all cells so as to obtain the sample point y in 
Step 2. The required precision for the reconstruction imposes 
the value of the grains. At each temperature, enough iterations 
are performed so that thermal equilibrium is roughly 
achieved. We interpret the equilibrium when the relative 
change in mean of the MSE is less than a small value (e.g. 
0.01). Different annealing schedules exist for the temperature 
change [10]. In this context, Tk is decreased with respect to 

1-= kk TT d                                                                            (6) 

where d is a constant smaller but close to unity. Typical 
values of d lie between 0.8 and 0.99. Finally, the algorithm is 
stopped when the ratio of the number of accepted points to 
the total number of generated points in a concluding 
temperature fells below a valuex , where Íx  [0, 0.1]. The 

parameters that give the lowest MSE in the entire algorithm 
are considered as the global solution to the inverse problem. 
 

3. RECONSTRUCTION EXAMPLES 
 
Because of paper deadline, the examples will be included in 
the paper later on.  
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