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1. Introduction 
MultiUser Detection (MUD) [1] is the key technology against interference in CDMA 

communication system. In real CDMA communication system, correlation of signals exists, which is 
named Multiple Access Interference (MAI). MAI produced by several users is small, but with the 
increase of users or the power of signal, MAI becomes the central problem in CDMA communication 
system. According to classical direct-sequence spread-spectrum theory, traditional detector filters signal 
of each user according to its signature waveform, which results in bad performance against MAI. Based 
on traditional detection technique, the multiuser detection detects desire user by utilizing all information 
causing MAI fully. Thus MUD has fine performance against MAI, solves the near-far effect, and 
reduces the requirement for precision of controlling power. So spectral resources can be utilized more 
effectively, which improves the communication capacity notably. 

Over the past more than ten years, various detection techniques have been proposed. The main 
multiuser detector conclude optimum detector [2], linear decorrelating detector [3], MMSE linear 
multiuser detector [4], multistage interference cancellation [5], decision-feedback detector [6], and 
detector based on neural network, etc. Reference [7] has proposed an adaptive multiuser detecor based 
on subspace tracking, which adopts PASTd algorithm to track the subspace. We found that with a 
random initialization, the convergence is fairly slow. The reason is that approximate estimation of 
subspace cumulate errors. Reference [7] calculates an initial matrix using SVD, then tracks the subspace 
with PASTd, which increase the complexity. The paper introduces the SP-1 (Subspace Projection) [8] 
tracking subspace, which reduces calculation complexity of the algorithm. And performance is 
equivalent to that of PASTd using initial matrix. The signal subspace estimation is achieved by SP-1 
followed by a new demodulating vector which modifies the MMSE detector. 
2. Signal Model 

Consider a synchronous DS-CDMA communication system in additive white Gaussian noise, 
which is shared by K simultaneous users. At the receiver, chip-matched filtering followed by chip rate 
sampling yields a N-vector of chip-matched filer output samples within a symbol interval T, which is 
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where  0 1 1(1/ )[   ]k k k T
k NN β β β −=s is the normalized signature waveform vector of the kth  user , N is 

the processing gain, 0 1 1( , ,  , )k k k
Nβ β β − is a signature sequence of 1's±  assigned to the kth  user. n  is 

a white Gaussian noise vector with mean 0 and covariance matrix NI ( NI  denotes the N N×  indetity 
matrix). 

For convenience and without loss of generality, we assume that the signature waveforms{ } 1

K
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1( , , )Kdiag A AA . The 
autocorrelation matrix of the received signal r is then given by 
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By performing an eigen-decomposition of the matrix C , we get  
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where 1[  ], ( , ); ( , , )s n s n s Kdiag diag λ λ= = =U U U Λ Λ Λ Λ  contains the K  largest eigenvalues of 
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C  in descending order and 1[ ]s K=U u u  contains the corresponding orthonormal eigenvectors; 
2

n N Kσ −=Λ I  and 1[ ]n K N+=U u u  contains the N K−  orthonormal eigenvectors that correspond to 
the eigenvalue 2σ . The range space of sU  is called the signal subspace and its orthogonal complement, 
the noise subspace, is spanned by nU . 

Assume that user 1 is the desired user and its signature waveform is 1s . A MMSE linear multiuser 
detector for demodulating the kth  user’s data in (1) is in the form of a correlator followed by a hard 
limiter  

1 1
ˆ sgn( )Tb = m r                                  (4) 

where MMSE detector 1
N∈ℜm . Minimizes the MSE, defined as  

2
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subject to 1 1 1T =m s . And we get an linear MMSE detector , in terms of the signal subspace parameters 
( , ,  )s s and σU Λ  
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3. Subspace Estimation using SP-1 and a new demodulating vector 
Classical subspace tracking is EigenValue Decomposition (EVD) and Singular Value 

Decomposition (SVD). Although their performances are better, the computational complexity ( )3( )NΟ  
is high. Computational complexity of PASTd is ( )( )NKΟ , and total computational complexity is 

3 2( ( ) ( ))N NKΟ +Ο  for solving an initial matrix. The section introduces a subspace tracking method, i.e. 
SP-1 [8] and its computational complexity is 2( )NKΟ . Solve a demodulating vector using the 
estimated subspace. 

Assume 1 2[    ]K
t t t tQ q q q= , and i

tq  is the 31 1×  eigenvector estimate associated with ith  
largest eigenvalue of tC . 1[  ]t tQ Q −= r , and (0 1)β β≤ ≤  is the forgetting factor. 
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end 
The computational complexity of SP-1 is 2( )NKΟ , and a little higher than PASTd. But it does not 

need initial matrix. In real CDMA communication system, computational complexity of SP-1 is lower 
than PASTd for N K . Table 1 shows the compare of computational complexity of the two 
algorithms. 

Table 1 Comparison of computational complexity of PASTd and SP-1 
Algorithm  Computational complexity 
PASTd 3( ) ( )N NKΟ +Ο  
SP-1 2( )NKΟ  

The initial matrix of PASTd is obtained by applying an SVD to the first 50 data vectors, which will 
result in a delay to the communication of users. SP-1 will not encounter this. 

If 0Q  has orthogonal columns, all subsequent tQ will have orthogonal columns. Let s tQ=U , so 
( ) ( ) ( )s srange range range= =U S U . 

The received signal r  is projected onto the subspace sU  to get a K -vector [9]. Its 
autocorrelation matrix is  

{( ) ( ) } { }H H H H H H
s s s s s sY E E C= ⋅ = =U r U r U rr U U U                 (6) 

According to (5) the new linear MMSE detector of user1 is given by  
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Since ( ) ( )s srange range=U U , it can be readily proved that the new detector newm  is equivalent 
to the MMSE detector presented in [7]. 
4. Simulation Results 

A synchronous CDMA system with processing gain 31N =  and six active users ( )6K =  is 
assumed. The user 1 is specified as the desired user. There are four 10-dB MAI’s and one 20-dB MAI in 
the channel, all relative to the desired user’s signal. The signature sequence of desired user is an 
m − sequence, while the signature sequences of the MAI’s are randomly generated. The forgetting factor 

0.995β = . The performance measure is the out signal-to-noise-and-interference ratios (SINR) [10] 
which is defined as  
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where 100M =  is the number of algorithm runs, and l indicates that the associated variable depends 
on the particular run. 

Simulation 1: Compare the performance of SVD, SP-1 and PASTd using initial matrix. The initial 
matrix of PASTd is obtained by applying an SVD to the first 50 data vectors. Figure 1 illustrates SINR of 
the three algorithms versus the number of samples where the SNR of user 1 is 20dB. From the 
simulation result, it is clear that convergence and steady-state performance of SVD are best; those of 
SP-1 are good, and equivalent to those of PASTd using initial matrix. 

 
Fig.1 Performance comparison of  SVD, SP-1, PASTd   Fig.2   Performance comparison of  SVD, SP-1, 

PASTd versus SNR 
Simulation 2: Compare the steady-state performance versus the SNRs of user 1. Simulation result 

is plotted in Fig. 2, which shows SVD MUD is the steadiest; performance of SP-1 and PASTd using 
initial matrix are almost the same. But SP-1 decreases computational complexity and is more suited for 
adaptive environment. 

Simulation 3: Compare the BERs of user 1. The SNR of user 1 is 20dB. We can see form Fig. 3 
that tracking of SVD MUD is fast and BER performance is best. BER performance of SP-1 is 
acceptable and equivalent to that of PASTd MUD using initial matrix. 
5. Conclusions 

In this paper, a new adaptive multiuser detector based on subspace tracking is proposed. The signal 
subspace estimation is achieved by SP-1 followed by a demodulating vector which modifies the MMSE 
detector. Simulation results show that performance of the multiuser detection based on SP-1 subspace 
tracking is good. SP-1 does not need to compute initial matrix, which results in lower computational 
complexity. And SP-1 has better convergence and steady-state performance. So, the algorithm proposed 
in this paper is practical. 
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Fig. 3  BERs of SVD, SP-1, PASTd 
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