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1. Introduction 
 

Since many people are killed or injured in landmine related accidents each year, it is highly 
desirable that reliable methods for detecting and identifying buried landmines are developed. 
Compared with a metal detector that is widely used for landmine detection, a ground penetrating radar 
(GPR) based approach would appear to offer many advantages, particularly for the detection of plastic 
landmines with little or no metal content [1]. However, reliability of the GPR system applied to 
detection and identification of shallowly buried landmines is not sufficient because the GPR also 
receives returns from other subsurface objects such as rocks, tree roots, or metal fragments in the 
ground, which yields high levels of false alarms. Accordingly, development of highly reliable 
algorithms for target detection and identification that are applied to GPR data is highly desired [2]-[6]. 

In this paper, we study an identification problem of mine-like objects under rough ground 
surface using the GPR. In the process of target identification, it is required to discriminate between 
targets and clutter objects using target features extracted from reference data prepared through prior 
experiments and/or numerical simulations. In general, the selection of the target features plays a key 
part in target identification because the identification performance strongly depends on the target 
features. In this study, we employ a time interval between two pulses reflected from top and bottom 
sides of landmine-like object as a feature and examine the identification performance. Since the time 
interval is closely related to the thickness and permittivity of the objects, we can expect that this 
simple feature is available and suitable for target identification. Through a Monte Carlo simulation 
using data set generated by a two dimensional finite difference time domain (2D FDTD) method, we 
show that good identification performance is obtained by using this feature even when the target is 
located at shallow depth under a rough ground surface. 
 
2. Feature for target identification 
 

First, we roughly estimate a time resolution that is required in detecting object thickness from 
GPR data. Let us consider electromagnetic pulse reflection from a dielectric slab of thickness d. Time 
interval between two pulses reflected from top and bottom sides of the slab is expressed as 

( ) rcdT ε0/2=        (1) 

where εr is the relative permittivity and c0 is the speed of light in free space. Change of the thickness 
∆d leads to the following time difference: 

( ) rcdT ε∆∆ 0/2=       (2) 

Since a relative permittivity of trinitrotoluene (TNT) is about 0.3=rε [7], it can easily be found that 
the difference of the thickness 0.1=d∆ cm corresponds to the time difference 12.0=T∆ ns. This 
indicates that if the detection ability of the time difference is less than 0.12ns, we can distinguish two 
objects that are more than 1.0cm different in thickness. Thus, we can expect that good identification 
performance will be achieved by employing the time interval Τ as one of the target features. However, 
it may be difficult to identify shallowly buried objects under rough ground surface using this feature, 
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because ground surface clutters caused by surface roughness and target/surface interaction effects 
make significant contributions to measured target signals. Furthermore, low contrast in relative 
permittivity of the buried targets and their surrounding soil makes the target signals weak and obscure. 
In the next section, in order to examine the ability of this feature to identify the targets when it is 
applied to more realistic GPR data, we carry out a Monte Carlo simulation using a data set that 
includes various GPR data samples. 
 
3. Evaluation of identification performance using two landmine-like targets 
 

Figure 1 shows the GPR measurement system considered in the numerical simulation. A 
Monte Carlo simulation is carried out for data generated by a two-dimensional FDTD method. Of 
course, a three-dimensional FDTD method may provide more accurate and realistic data, but it would 
require large computation time to generate the hundreds of data required for a Monte Carlo simulation. 
Thus, here we employ a 2D version for data generation. The measurements are made at multiple 
observation points above the rough ground surface using transmitting and receiving antenna pair. As 
the target models, we use two landmine-like objects with 9.0cm in width and 4.0cm and 5.0cm in 
height. Simulations are carried out for 100 rough surface realizations with Gaussian distributed height 
and slope generated by the method proposed by Thorsos [9]. Figure 2 shows one of the realizations of 
surface roughness that we used for numerical simulations. The root mean square (RMS) height and the 
correlation length of the surface roughness are set to be both 1.0cm. In the simulation we assume the 
surrounding dry soil with permittivity of εr = 4.0 and conductivity of σ = 0.0842 S/m is non-dispersive. 
The depth of the target is varied between 2.0cm and 4.0cm. 

For accurate estimation of the time interval T, selection of an incident pulse is important, 
because it strongly affects the estimation accuracy. As an incident pulse that is convenient for 
measuring the time interval between two pulses, we employ here a monocycle pulse that has narrow 
width and sharp peaks. The pulse used for the simulation is shown in Fig.3. Parameters that determine 
the pulse width and bandwidth are chosen such that the pulse has most of its energy in the frequency 
band between 1GHz and 6GHz. 

As mentioned previously, it is difficult to estimate the time interval from raw GPR data due to 
the effects of surface roughness. Thus, a signal processing for reducing ground clutter contributions is 
required. In our approach, we first reduce the ground clutter contribution by subtracting a dominant 
coherent component of the ground surface reflection, where the coherent component denotes the 
reflection from a flat ground surface without the presence of any buried targets lying beneath it. Next, 
we further reduce the effect of the residual incoherent components of the ground surface reflection by 
exploiting the difference of statistical property between the target signals and the incoherent 
components of the ground surface reflection. This reduction procedure includes the following two 
steps: 1) ensemble averaging of the aligned GPR signals measured at the multiple observation points; 
2) multiplying the ensemble averaged signal by a diagonal matrix whose elements include inverse of 
the variance of the averaged signals. In Fig. 4 we show an example of the processed GPR signal 
together with the original raw GPR signal. We can see that for this example the ground surface 
reflection is suppressed and peaks of the target signal are enhanced through this signal processing. 
Consequently, an accurate estimation of the time interval becomes possible.  

In Fig. 5(a) we show a histogram of the time interval T obtained by using 100 data samples. 
For comparison, we also show in Fig. 5(b) a histogram for raw GPR signals (without the signal 
processing for ground clutter reduction). This result indicates that we can successfully distinguish two 
model targets that are 1.0cm different in thickness by using the time interval T. We also show, in Fig. 6, 
histograms of the time interval for two kinds of surface roughness. Although the variance of each 
distribution increases as the surface roughness increases, the time interval T still gives good 
identification performance for this example. Consequently, we can confirm from these results that the 
time interval T is available for one of the features for identification of mine-like targets even when the 
targets are located at shallow depths under rough ground surfaces where the responses from the ground 
surface and that from the target overlap in time. 
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4. Conclusions 
 

We have proposed the simple feature for identifying shallowly buried mile-like objects using 
GPR systems and have evaluated its identification performance. This feature is the time interval 
between two pulses reflected from top and bottom sides the object. Through the Monte Carlo 
simulation using data set generated by the 2D-FDTD method, we have confirmed that good 
identification performance has been obtained by using the feature even for targets buried at shallow 
depths under rough ground surfaces. This result indicates that the time interval is available and 
suitable for discriminating between landmines and confusing clutter objects. 

In our simulation, we have assumed that the surrounding dry soil is homogeneous and 
non-dispersive because we wished to focus on the effects of the surface roughness. Effects of 
inhomogeneity and dispersion of the soil should also be considered. Furthermore, performance 
evaluation using actual GPR data obtained through field experiments should also be undertaken. These 
important research problems are currently under investigation. 
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Fig. 1 Schematic of the GPR measurements for 
numerical simulation.(d = 4cm and 5cm) 
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Fig. 2 An example of the rough ground surface.  
(RMS height and correlation length are both 1.0cm)
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     Fig.3 Incident pulse used  

for simulation. 

   
(a) GPR signal after processing           (b) Raw GPR signal 

 
Fig. 4 Example of the processed waveform. 
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(a) GPR signals after processing                             (b) Raw GPR signals 

 
Fig. 5 Histograms of the time interval T obtained from 100 data samples. The RMS height and the correlation
length of the surface roughness are both 1.0cm (Fig. 2). 
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(a) RMS height: 1.0cm, correlation length: 3.0cm.           (b) RMS height: 1.5cm, correlation length: 3.0cm. 

 
Fig. 6 Histograms of the time interval T obtained from 100 data samples. The RMS height and the correlation
length of the surface roughness are (a) 1.0cm and 3.0cm, (b) 1.5cm and 3.0cm. 
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