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Abstract - A nodal finite element method is presented to analyze the propagational 
characteristics of inhomogeneously loaded waveguides. The propagation constant is IreaJed 
as an eigenvalue. The bisection method is modified ill order {O be applicable to nonpositive 
definite matrices. Owing 10 the sparse matrix techniques and (he iterative solver applied, 
complicated structures can be analyzed. 

I. INTRODUCTION 

Due to the development in the computer techniques and the finite element analysis, the 
propagational analysis of inhomogeneously loaded waveguides is becoming a routine task in 
the design of microwave systems. In contrast to the great hardware and software 
improvement, there are still important problems to be solved. 

The problem of the spurious mcxles seems to have been overcome, when the wavenumber 
is treated as an eigenvalue. In this case, there is no much difference between the 2D and 3D 
applications. The key is the treatment of the undesired gradient field which occures at zero 
wavenumber. The solution is either to impose the solenoidality condition or to to restrict the 
approximation of the gradient fields to a subspace of finite dimension. 

The imposition of the solenoidality condition is usual in the case of a ncxlal element 
approximation [I]. A special penalty factor method is described in [3], introducing a scalar 
potential to incorporate the Coulomb gauge which coincides with the solenoidality 
condition. Special elements are used in [5] to filter out the undesired gradient field . 

Recently, vector tangential finite elements or edge elements are used to avoid the 
spurious solutions [2,4]. A decisive property of these elements is that a fmite number of 
gradient fields can be described exactly by them . 

Other problems arise when the propagation constant is treated as an eigenvalue. The first 
practical problem is that a second order polynomial eigenvalue problem is obtained. There 
is a possibility to reduce it to a usual, generalized eigenvalue fonn, but it leads to indefinite 
matrices. The second problem is how to use an iterative solver which yields only the 
desired few eigenvalues with the sparsity of the matrices fully utilised. The most of the 
iterative solvers utilise the positive definiteness of the coefficient matrix of the 
propagational constant. If a formulation leads to symmetric, sparse but not positive 
definite matrices, the question remains, how to solve it in an efficient way. 

eendes [4] uses a transformation for the variables which results in the usual form with 
symmetrical matrices, but the coefficient matrix. of the eigenvalue is not positive definite. 
A modification of the lanClOS method is pTOJXlsed for the solution. 

The aim of the paper is to present a nodal element based method for the treatment of the 
propagation constant as an eigenvalue which leads to symmetrical matrices. Lossless 
waveguides with isotropic material characteristics are discussed. Since the propagation 
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constant is the eigenvalue, the applied formulation has to be valid for both imaginary and 
real case. Though, a second order JX>lynomial eigenvalue problem is obtained, and the 
'key' matrix is not positive definite, a modified version of the bisection method results in 
an efficient iterative solver. This is due to the fact that the order of the negative definite 
block of the coefficient matrix of the propagation constant is known and it is equal to the 
number of the nodes. Sparse matrix techniques are used for the solution. 

Numerical examples are presented to demonstrate the efficiency of the proposed method. 

II. BASIC EQUATIONS 

A waveguide inhomogeneously loaded with isotropic dielectric and magnetic materials is 
considered. The cross section, 0, of arbitrary shape is in the x - y plane and its boundary is 
r. Using the magnetic vector and electric scalar potentials and the fact that every variable 
varies in z-direction as e yz , the following wave equations and boundary contitions have to 
be satisfied ([3]): 

vV Ir xV ".AIr - vV"V".A" -y 1 A1r -k;e,(Au + V uV) = 0 

-vV u' V"A, - vy' A, -k:e,(A, + yV) = ° 
(I) 

(2) 

k; (Vir' e ,Air + ye,Az + V". er V IT V + yl e, V) = 0 (3) 

A"xn = O, A, =0, V=O, vV", .A" =0, on electric walls (4) 

vV.xA. xn=O, e,(A.+VV).n=O, V"A, .n=O, A".n=O onmagneticwalls (5) 

where the subscript "tr" and "z" mean the transversal and the longitudinal components, 
respectively. 

ill. DISCRETIZATION 

For the solution of the differential equations (I) - (3), the following functional has to be 
extremized: 

F(A·, v·) = b[(V x A ·vV x A + V. A ·vV.A)-k: (A· + VV·)e,(A + VV)] dU, (6) 

where the superscript asterisk denotes the test function and conjugate complew quantities . 
Since there is no integration in z-direction, the integrandus has to be independet of z. This 
can be attained, if in the test functions , 'Y. = -'Y. It can be shown [3], that when the first 
variation of the functional is zero, both the differential equations (1)-(3) and the natural 
boundary conditions are satisfied. Partitioning the variables into transversal and longitudinal 
parts, we get: 

F(A;"A;, v') = f [(V "A;, + y'e, x A;, + V "A;)v(V "A" +)e. x A. + V.A. ) + 
a 

(V.A;, + y' A; )v(V "A" + yA,)-

k:(A;, +V"v' +e.(A; +y'V'))e,(A" +V"V+e.(A, +y V))JdU (7) 

Using the usual nodal finite element discretization (8-noded isoparametic elements were 
used), the structure of the matrix equation is: 
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Ax + y'B(y)x = 0; xT = [A. A, A, V] (8) 

Bo 0 0 0 

Au A" 0 An 0 B" 0 0 

B= 0 0 Bo 
-k~ B 
R n -y 

AT A" 0 A" A= 
., 

0 0 Au 0 (9) 

k' 
0 0 - 0 BT -k~ Bn R ~ -y 

AT A:-v 0 A~ p 

IV. BISECTION SOLVER 

The bisection method consists of two main steps. The fIrst step is to localize the 
eigenvalues finding lower and upper bounds for them by a factorization process. The 
sufficient condition for the factorization is that the matrix B is positive definite. This fact 
ensures that there exist a lower bound of the eigenvalues at which all the diagonal elements 
of the factorized matrix will be negative. If the matrix B is not positive definite, there 
remain positive elements in the factorized matrix at arbitrary low eigenvalues. In our case, 
the number of these elements is equal to the number of the nodes, which is the order of the 
negative definite block of the B matrix. This means that the detection of the lower bound is 
shifted by this number. If 'Y becomes real , the off-diagonal blocks of the B matrix are 
neglected at the calculation of the approximate bounds of the eigenvalues. 

The second step is to calculate correct eigenvalues and eigenvectors by inverse iteration. 
During the inverse iteration, the eigenvalue is treated as a complex variable (real or 
imaginary). The procedure needs a very little modification of the bisection solver described 
in [7]. There was no significant difference in the computation time compared to the case 
when the wave number was the eigenvalue. Since sparse matrix techniques are used and 
only the desired eigenvalues are sought, the number of the unknowns can be high , without 
the computation time becoming too long. 

V. EXAMPLES 

Two numerica1 examples are presented to test the method. One is the well know half 
filled waveguide, the other is an image waveguide. Fig. 1 shows the first two dispersion 
curves of the half filled waveguide. The results show a good agreement with the analytical 
solutions. Fig. 2 and 3 show the dispersion curves and the power distributions of an image 
waveguide, respectively. The curves fit well to the curves taken from [4] . 

CONCLUSIONS 

The nodal finite element formulation of inhomogeneously loaded waveguides yields the 
possibility to treat the propagational constant as an eigenvalue, using a modified version of 
the iterative bisection method for the solution. This is due to the fact that the order of the 
negative definite block of the coefficient matrix of the propagation constant is known . 
Sparse matrix techniques are applied for the numerical realization. 
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Fig. 1 : The dispersion characteristics of 
the half filled waveguide 
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Fig. 2 : The dispersion characteristics of 
the image waveguide 

Fig. 3 : The power distribution for the first and second modes in the image waveguide 
at I<oc=2.0 
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