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1. Introduction

Recently microwave techniques incorporating advances in signal processing have been developing
rapidly. In particular mapping of sub-surface random ground and detection of underground objects
are important applications. As a consequence, underground radar systems which display the
scattering field patterns of electromagnetic waves have become practical [1]-[{4]. However, due to
randomness and inhomogencous nature of the underground media, itis very difficult to analyse their
characteristics accurately. In principle, it is necessary to study electromagnetic wave reflection and
scattering under various conditions of underground media.

One of the most powerful methods of computational analysis applicable to such probiems is the
Finite Difference Time Domain (FDTD) method. In this paper we apply FDTD method (o simulate
the scattering characteristics of an underground media consisting of an air gap target region in the
presence of randomly located obstacles. Numerical results are given for various casesof the medium
properties like the medium electric permittivity and the number, size and location of obstacles.

2, Analysis Model

The two dimensional analysis model is schematically displayed in Fig.! and a general FDTD
modelling in Fig.2. We consider a rectangular region consisting of a target air-gap and obstacles
located randomly relative to it. The figure shows that the origin is located at the ground level,
implying that the mapping is conducted at a short distance above the ground. The shapes of air-gap
as well as obstacles arc rectangles. Typical numerical values considered are: 2.56m along x-axis,
0.44m above the ground, 2.56m below ground for the analysis region. The size of the air-gap is 1m
x 0.5m and is located 0.5m below the ground.

The analysis corresponds to illuminating the region by an electromagnetic monopulse having
spatio-temporal distribution, and analysing the reflected fields. This can be practically done by
placing a planar antenna along the x-axis above the ground. The length of the antenna is typically
0.3m and is placed 0.1m above the ground. Except for the target air-gap and the obstacles which are
random, the medium is considered non-dispersive and homogeneous with a relative permittivity,
€.=4.0.

3. Source Modelling

Source modelling essentially consists of choosing an appropriate current distribution function
corresponding to illumination of the analysis region by a pulse wave from a planar antenna. This
current distribution is the source term in the Maxwell's equations which determine the reflected and
scattered ficlds along with the boundary conditions on the region. In order to illuminate a wide
subsurface region of 0.3m long, the current source distribution is characterized by sinusoidal
function in the spatial domain (x-direction) (Fig.3), and by a Gaussian function in the time domain
(Fig.4).

. (r 1-3Y
Mx)= Asm(zx)exp{-—a( t~ )} 0<t<,0sxsL )
0 otherwise

where A, a , 1, and L are 100, 30, Snsec, 0.3m respectively.
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4. FDI'D Method

Characteristics of electromagnetic waves are expressed by Maxwell's curl-equations. FD-TD
method proposed by K.SYee[S] is used, in which these partial differential equations are
approximated by difference equations first, and then the electric and magneltic fields are calculated
mutually from initial values at every incremental time At. For the two-dimensional model shown Fig.1,
the Maxwell's curl-equations are transformed to the following difference equations.
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Where p and ¢ are space coordinates, n is a time step number. And Ax=Az=As and At denote the
spacial increment and temporal increment, respectively. These increments have 10 satisfy
computational stability condition. So, in this study, we set As=0.01m, At=0.02nsec.

We adopt the following absorbing boundary conditions due to G.Mur'[6], in order 10 replace the

actual situation of infinite underground region by a finite sized rectangular region.
d 14
— 4~ |Ey=0 9
(24125 ©)
where n is out ward pointing normal on the boundary. And v is propagation velocity.
So, electric field Ey on the boundary x=0 is

£(0.9)= K (L) + G{E" (1g)- 57 (0.)} (10)
where
_VAI-As
G= VAL +As an

5. Statistical Representation of Random Medium

Statistically a random medium isrepresented by a multivariable random function with parameters
representing the constants and variables of the medium including the obstacles and the target bodies
within the region. In the present study, the parameters are the electric permittivity, size and location
of the obstacles which are random variables. Fourier analysis can be applied to this statistical
representation by considering the complexity of random medium as an input data. If the input data
is considered as a two dimensional random function &p, g), where the integer variables p and ¢
correspond to spatial and temporal coordinates in physical space, the Fourier spectrum that formally
represents the complexity of random medium is given by

Gtk =5, Setp.grexe 22 )exp(‘z’”"’ ) (12)
=0 420 M N

Here j= ~=1 and M and N denote the matrix size of the random data. k and Il correspond to the

two dimensjonal spatio-temporal frequency domain.
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This spectrum can be normalized as follows:

G, (k1) = graelfed)
2 3G,(r.s)

=0 m0
Alimiting value of normalization can be obtained by considering an appropriate standard random
medium. Thus a Gaussian distribution for the function &(p, q) is chosen as a suitable standard. Then
1
G,‘:G‘,(k,l):W k=0---M-1,1=0---N-1). (14)
For an arbitrary random function &(p, q), a formal estimation of the randomness can be givenby

the variance o, given as a deviation from the Gaussian case

o= :'i't'z"{c,,(k.l)—c;,,}2 : (15)

=0 120

Another equivalent statistical representation is given by the two dimensional auto-correlation
function defined by

M-1N-1
R(mn)=7Y Ye(x y)e(x+m,y+n)

x=0 y=0

=FY{IG,(k.D}

_ 1 man 2 2 jkm 2njin

=% IZ;",JG,(k.I)| exp( z )exp(—N ) (16)

where F indicates the inverse Fourier transform.
In this case an estimation of the medium randomness can be obtained from the Fourier transform

of the auto-correlation function, by defining i/ value of spectral intensity distribution as the
indicative auto-correlation value.

Thus using Fourier analysis, it is convenient to represent statistically various important features of
the random medium such as the electrical permittivity of the obstacles, their size, spacing and so on.

6. Analysis Result

As a specific example of analysis, we consider a ground medium of relative permittivity g, = 4,
conductivity o, = 107[s/m], relative permeability p, = 1,N =400 obstacles each of size d < 10cm and
£, < 8.

The model considered is shown in Fig.5 with their corresponding parameters displayed inTablel.
The result of FDTD analysis of received signal is shown in Fig.6. Fourier power spectrum of this
analysis model is shown Fig.7. The indicative auto-correlation value for this case is about 10cm.

(13)

7. Conclusion

Statistical representation of a random medium is done, and the relationship between the received
signal and the medium is established. The analysis may be further developed in many ways like
increasing the accuracy and speed of the FDTD algorithm, extending to three dimensional cases,
incorporating more randomness and parameters and considering the cases much closer to practical
conditions. Improvements can also be accomplished through more sophisticated signal processing of
the received signal patterns.
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Tablel Position of obstacles

X axis |Z axis| Size €ro
0.02 | -1.3710.080| 3.23
0.80 | -2.30| 0.080| 2.38

400 | 1.96 | -0.75|0.020| 3.04
Max | 2.45 | -0.01 | 0.090| 8.99
Min | 0.01 | -2.56 |0.010] 1.01

sae [ N) | —

Mean| —— |—— [ 0.052| 4.89
Fig.5 Permittivity e(p,q) at the underground
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