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1. INTRODUCTION

Recently, nonlinear guided-optical phenomena have attracted the attention of many workers to
establish the all-optical signal processing. As one of the nonlinear media, the Kerr-type medium
whose refractive index depends on the light intensity is usually used. This medium shows the
interesting phenomena such as self-focusing, generation of self~-phase modulation and optical
bistability [1], [2]. The grating couplers are one of the most important elements for the optical
integrated circuits. Under some approximations, the mode conversions [3] and the beam scanner
[4], [5] are examined. For the more complete interpretation of the properties of the nonlinear
grating couplers, the precise analysis is needed.

In this paper, the nonlinear grating couplers are analyzed by using the singular perturbation
technique with the multiple space scales [6]-[8]. The perturbation is carried up to the second
order. As a numerical example, the properties of the output coupler and the input one are
examined. The case of TE polarized wave is treated and the time factor exp(jwt) is suppressed.

2. FORMULATION OF THE PROBLEM

Let us consider the nonlinear grating couplers as shown in Fig. 1. The relative dielectric constant
in the film is £; + | E, [2. The coefficient a is the nonlinear coefficient and E, is the electric field
in the film. The relative dielectric constant in the cladding is ;. We assume that £y > £; and
that the nonlinear medium in the film is self-focusing, i.e., @ > 0. The equation for the grating
profile is given as follows:

z=¢(z)=d+hcosKz, (1)

where K(= 2r/A) is the wave number of the grating. For TE wave, the governing equation is
written as follows:
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§;§+'a—z'§+k &(z) Ey+k a(z)|Ey|"Ey =0, (2)
where
{51, —-d <z <&(z2) {a. -d <z <€(2)
e(z) = v )= ) (3)
g2, z<-—d, z>&2) 0, z<—-d, z>§&z)

and k(= 27 /) is the wave number in free space.

We assume that the nonlinearity is weak and the maximum grating depth is small compared
to the average thickness 2d of the slab waveguide. The orders of o|E,|* and h/d are the same and
these smallness are indicated by the parameter §. The different space scales in the z direction
20 = 2,21 = 62,23 = 6°z are introduced and expansion of the electromagnetic field components
are used:

2
Tl'(% 3) = Z 6™ ¢(m)(1’q 205 21, 22) 1 (4)

m=0

where 9(z, z) denotes the electromagnetic field components H,, E,, H,. Substituting Eq. (4)
into Eq. (2) and equating coefficients to equal of ¢ to zero, we can get the governing equations
for each order [8].

Since the maximum depth of the grating is very small compared to the thickness of the slab
waveguide, the equivalent boundary conditions are derived by expanding the electromagnetic
field components in a Taylor series about z = d. The boundary conditions at z = —d require
the continuity of the tangential electric and magnetic fields.
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3. PERTURBATION SOLUTIONS

0(6°) solutions : From the consideration of the governing equation and the equivalent boundary
condition, the zero-order solutions correspond to the symmetric linear slab waveguide. In this
paper, the following even guided wave is considered.

Ag(z1,22) cos apdexp{—o(|z| — d)}, |z| > d
E(® = exp(—jBozo0) N , (5)
Ag(z1,27)cos agz ; |z| < d
where
Q%:g;kz—ﬂg' 7§=ﬁ§—£2k2, (6)

and Agy(z;,2) is the complex amplitude of the guided wave. The normalized coefficient N
is defined in such way that |Ag,|2 equals to the power carried by the guided wave. From the
boundary condition, the dispersion equation tan ogd = vo/0vp is obtained.

0O(46') solutions : From the boundary conditions, it can be shown that the first-order solutions
are composed of the first harmonics possessing the wave numbers 8; — K and f + K in the zg
scale. We assume that only the fp — K wave is a fast wave, i.e. a radiated wave. Consequently,
we seek the solutions in the following form:

E;” - Nre—JK-lzu {a]ej‘r-l(z—d) 4 ble-rr-l(z-d)} g CIE-JM:o-‘n(r—dJ

4 1Mz —vo(x—d) {Gl _ 'Mcos apd % z} , z>d, (7)
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1BoN 0A
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= k3:; |Ag)* Ag(120g7 sin agz — cos 3agz )] , —d<z<d, (8)
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where
K., = fo— K, ol = eik*= K3,, 72, = e3k? = K2,
(10)
Ky = fo+ K, of = e1k% - K{, W = Kf —egk?

In Eq. (7), a1,by and N, are the normalized amplitudes of the incident and radiated waves
in the region z > d and the normalized cocfficient. The coefficients @;,b; and N, in Eq. (9)
are the normalized amplitudes of the incident and radiated waves in the region z < —d and the
normalized coefficient. ¢; and @, is assumed to be known. The unknown coefficients by, by, ¢;, %1,
Ay, By,Cy, Dy, Ey, Fy, Gy,G,, which are functions of zy,2z;, are determined by the boundary
conditions. Applying the boundary condition using the zero-order dispersion equation, we can
get the solvability conditions to have nontrivial solutions as follows:

dA . 2

3_219 = Jq{”lAgrAg ) (11)
where 1{!) is the coefficient including . In the linear case, the amplitude Ay is not a function
of z; [6], [7]. However, it is found that A, depends on z; in the nonlinear case.

0(52) solutions : An examination of the second-order boundary conditions shows that only the

second-order solutions having a z dependence exp(—jfazo) will participate the coupling between
the guided waves and the scattered first-order waves. Therefore, we shall seek the solutions
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having exp(—jfoz0). The concrete expressions of the solutions are omitted on an account of
space consideration. By similar calculation in the O(é?) solutions, the solvability conditions to
have nontrivial solutions are obtained as follows:

A,

ol = 0101+ 021 + g3 + jn? | 4,|* 44, (12)

where g; ~ g3 and 1'®) are the coefficients including o,  and so on.

4. PROPERTIES OF NONLINEAR GRATINGS

After the multiple space scales zp, z;, and 22 are transformed back into the original space scale
2, and Eqgs. (11) and (12) are used, it is found that the complex amplitude of the guided wave
Agy(z) is governed by the following equation:

dA . . (2

d—: = g1y + g2b1 + gaAg + jn V| AP Ay + jn'P|A 1 4, . (13)
This equation shows the nonlinear equation to describe the power leakage of the guided wave
due to the second-order coupling to the first-order wave. We can obtain the field distribution,
leakage power, and the radiation angle at the arbitrary z by solving Eq. (13) numerically.

Let us consider that the grating exists over a finite length of the waveguide from z =0 to
z = L and assume that the end effects taking place near z =0 and z = L are neglected. In this
case, the angle for the maximum radiation 6,,4 is given by cos™'[( K_; + 8,)/./z2k]. B, denotes
the imaginary part of the complex amplitude of the guided wave A,.

The coefficients g; ~ g3 in Eq. (13) is the same as that of the linear grating couplers.
The real coefficient 7(?) is the same as that of the nonlinear slab waveguide. Therefore, the
attenuation coefficient ag, which is the real part of Ag, is constant. However, 3, is a function of
the power carried by the guided wave |A,|* and changes as propagating along the z axis. Then
the angle for the maximum radiation is deviated from that of the linear case. The nonlinearity
effects on the phase modulation.

In this paper, the liquid crystal MBBA is chosen as the nonlinear medium. The parameters
are \/z1 = 1.55, /22 = 1.52, @ = 0.6377 x 107" [m?/V?], A = 0.5145pm, d = 1um, A/X = 0.6,
and h/d = 0.1.

At first, the output grating, which is not involved the incident wave in Eq. (13), is considered.
Figure 2 shows the angle 6,,4 for the maximum radiation as a function of the propagating length
kz. The kinds of the lines mean the incident power and are explained in the figure. It is found
that 6,,4 becomes larger as the guided wave propagates. So, the radiated wave is focused at
some plane over the grating.

Next, we consider the input grating with the length L = 2mm. In this paper, the incident
wave is considered in the form of a uniform plane wave. Figure 3 indicates the input efficiency,
which is defined as the ration of the power of the guided wave at z = L to the total incident
power P, = |a;|*L on the grating, as a function of the deviation A# from the incident angle
of the linear grating which equals to the radiation angle. The kinds of the lines mean the
incident power and are explained in the figure. It is found that the input efficiency decreases
as the input power increases and the angle for the maximum input efficiency deviates from that
of the linear grating. The input efficiency is maximum when the incident angle equals to the
radiation one. As explained in Fig. 2, the radiation angle depends on the power of the guided
wave which is excited by the incident wave. So, the input efficiency depends on the incident
power. Figure 4 shows the power of the guided wave at z = L as a function of the incident
power P;, for Af = 0.006°. This figure shows that the nonlinear input grating might be useful
for the bandpass power filter [9] or optical switch since the guided wave can be transmitted a
large signal for input powers within a certain range, and little of the signal for the input power
above or below the range.

5. CONCLUSIONS

We have analyzed the nonlinear grating couplers by using the singular perturbation technique.
The properties of the output and input grating couplers are examined numerically. The results in
this paper are the fundamental properties for the design of the integrated optical circuits. From
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now, the properties of the nonlinear grating couplers have been investigated from the practical
point of view. This work was partially supported by a Scientific Research Grant-in-Aid from

the Ministry of Education, Science, and Culture, Japan.
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Fig. 2. Angle of the maximum radiation
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Fig. 3. Input efficiency for various input
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Fig. 4. Guided power at the end of the




