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1. INTRODUCTION 

Recently, nonlinear guided- optical phenomena have atLracted th e attention of many workers to 
establish the all- op tical signal processing. As one of the nonlinear media, the Kerr-type medium 
whose refractive index depe nds on th e light int ensity is usuaUy used. Th is medium shows t.he 
in teresting phenomena such as self-focusing, generation of se lf- phase modulation and optical 
bistability [1], [2J. T he grat ing couplers are onc of the most important elemen ts for the optical 
integrated circuits. Under some approximations, the mode co n\'ersions [3J and the beam scanner 
[4], [5] arc exa mined. For the more complete interpretation of the properties of the nonlinear 
grating couplers, th e precise analysis is needed. 

In this paper, the nonlinear grating cou plers are analyzed by usi ng tIle singu lar perturbation 
technique with the multiple space scales (6J-[8J. The perturbation is ca rried up to the second 
order. As a numerical example, the properties of the output coupler and the inpu t one are 
examined. The case of TE polarized wave is treated and the time factor exp(jwt) is suppressed. 

2, FORMULATION OF THE PROBLEM 

Let us co nsider the nonlinear grating couplers as shown in Fig. 1. T he relative dielectric constant 
in the film is £1 + alE, 12. The coefficien t a is the nonlinear coefficien t and E. is the electric field 
in the film. The relat i\'e dielectric constant in the cladding is £2. We assume that £) > £2 and 
that the nonlinear medium in the film is self- focusing, i.e. , 0' > O. The equation for the grating 
profile is given as follows: 

x = (z)=d+hcosKz, 

where K(= 2rr/A) is the wave number of the grating. 
written as fo llows: 

(
8' 8' ,) ' )' ax' + az' + k «x) E, + k a(x IE,I E, = 0, 

where 

(J) 

For TE wave, the governing equation is 

(2) 

{ 

<) , 

«x) = 
<, , 
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x<-d, x>(z) 
a(x) = 

{

a, 

0, 

- d<x«(z) 

x < -d, x> (z) 
(3) 

and k(::::: 27f/>') is the wave number in free space. 
We assume that the nonlinearity is weak and th e maximum grating depth is small compared 

to the average thickness 2d of the slab waveguide. The o rders of 01E.12 and hid are the same and 
th ese smallness are indicated by the parameter 6. The different space scales in the z direction 
Zo::::: Z,ZI::::: 6z,zz::::: 6zz are introduced and expansion of th e electromagnetic field components 
are used: , 

¢(X, z)::::: L om W(m)(x , Zo, Zt, zz), (4) 
m=O 

where W(x, z) denotes the electromagnetic field components Hz, Ell' J/: . Substituting Eq. (4) 
int.o Eq. (2) and equating coeffi cients to equal of 6 to zero, we can get the governing equations 
fo r each o rder 18J. 

Since tIle maximum depth of the grating is ver)' small compared to the th ickness of the slab 
waveg uide, the equivalent boundary conditions are deri\'ed by expanding the electromagnetic 
field components in a Taylor se ries about x = d. The boundary conditions at x = -d require 
th e continuity of th e tangential electric and magnetic fi elds. 
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3 . PERTURBATION SOLUTIONS 

0(0°) solutions: From the consideration of the governing equation and the equivalent. boundary 
condi tion, t he zero-order solu tions correspond to the symmet ric linear slab waveguide. In this 
paper, the following even guided W;l\'C is considered. 

{ 

A,('I, ") co"'od exp{ - 10(1' I - d)) , 
£';,0) = exp( -jflo'o)N 

Ag(Zhz2)cosaOx , 

where 

-' - ,k' fJ' "'0 - I - 0, 

Ixl > d 
(5) 

Ixl < d 

(6) 

and Ag(ZI,Z2} is th e complex amplitude of the guided wa ve. T he normalized coefficient N 
is defined in such way that IAgl2 equals to the power carried by the guided wave. From the 
boundary condition, the dispersion equation tan aod = IC/oo is ob tained. 
O(til) solut ions: From the boundary conditions, it can be shown that the first-order solutions 
are composed of the first harmonics possessing the wave numbers 130 - K and flo + J.." in the Zo 
scale. We assume that only the flo - K wave is a fast wave , i.e. a radia.ted wave. Consequently . 
..... e seck the solutions in the follo ..... ing form: 

Etl) = N , e-J[{- I:o {aten-I(.r-d) + ble - n - L(.r-d)} + cle - J f(t:o--II(.r-d) 

+ e-JI\J~o-'Yo(.r-d) {G
1 

_ jfJoN cos aoa GAg x}, x> d, 
"Yo (hI 

(7) 

~I) = e-JK-I~G (AI sin a_Ix + HI cos a _Ix) + e - JKllO (Cl s in O'IX + DI cosalx) 

J{jtlO [E . F jfloN aAg . + e- I sI n O'oX + I cOSO'oX + -- -0 XSl n aox 
0'0 =1 

k
2
0'N3 1 - 2 jAgjJAg(12aoxsinaox -cos3aox) , -d<x<d, 

32ao 
(8) 

~I) = NT e-)K _110 {al e- n-.(Hd) + b1eJ1'-I(Z+d)} + Cl e-JK. : o+ .,.(.r+d) 

+ e-J/3G:o+.,o(.r+d) {GI + jf30N cos aDa 8Ag x}, x < -a , 
"Yo 8z1 

(9) 

..... here 

K _I = flo - K , 
(10) 

KI = flo + K, 

In Eq. (7), a"b J and NT are the normali zed amplitudes of the incident and radiated waves 
in the region x > d and the normali zed coefficient. The coefficien ts if], bl and NT in Eq. (9) 
are th e normalized amplitudes of the incident and radiated ..... aves in th e region x < -d and the 
normalized coefficient. at and al is assumed to be known. The unknown coefficients b"b

" 
CI.Ct . 

AI,BI ,C), DI , E"FI , CI,GI , which are func tions of ZI,Z2, are determined by the boundary 
co nditions. Applying the boundary condition using the leTo-o rder dispersion eq uat ion, we can 
gct the solvability conditions to have nont rivial solutions as follows: 

vAg _ . (I)IA I'A 
8z) -)11 9 9 , (JJ ) 

where '1(1) is the coefficient including 0'. In the linear case, the amplitude Ag is not a function 
of Zl [6]' 17J. However, it is found that Ag depends on ZI in the nonlinear case. 
0(62 ) solutions: An examination of the second- order boundary conditions shows that only the 
second-ord er solutions having a Z dependence cxp( - if30zo) will participate th e coupling between 
th e guided waves and the scattered first-order waves . Therefore , we shall seek the solu tions 
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ha"ing exp(-j.8ozo). The concrete expressions of the solutions are omitted on an account of 
space consideration. By similar calculation in tIle 0 (6 1

) solulions , the solvabiHty condi tions to 
have nontrh'ial solutions arc obtained as follows: 

8A g '(2) • 
8:;2 = 91 a , + g2 bl + 93 A g +}1J IAgl A g , (J 2) 

where g, ..... 93 and 1,('l) are the coefficients including 0', h and so on. 

4. PROPERTIES OF NONLINEAR GRATINGS 

Arter the multiple space scales ':o,Z" and ':2 are transformed back into the original space scale 
Z, and Eqs. (11 ) and (12) are used, it is found that Ihe complex amplitude of the guided wa\'e 
Ag(':) is governed by the following equation: 

dAg = glal + g2b, + g3Ag + jl'j(l)lAl! A9 + j)'P) IAg 1 ~ Ag . ( 13) 
dz 

Th is equatio ll shows the nonlinear equation to describe the power lea kage of the guided wave 
due to the second-order coupling to the first.-order wave . We ca n obtain the fi eld distribution, 
leakage power, and the radiation angle at the arbi t rary Z by solving Eq. (13 ) nume rically. 

Let us consider that the grating exists over a fin ite length of the wa\'eguide from z = 0 to 
z = L and assume that t he end effects taking place near z = 0 and.: = L are neglected. In this 
case, the angle for the maximum radiation Orad is given by cos-I [( K_, + .8g)j.;e:ikJ . .89 denotes 
tlle imaginary part of t he complex amplitude of the guided wave Ag• 

The coefflcients gl ..... 93 in Eq. (13) is ~he same as that of the linear grating couplers. 
The real coefficient 1J(2) is the same as that of the nonlinear slab waveguide. The refore, the 
att enuation coefficient Og, which is the real part of Ag, is constant . However , .8g is a function of 
the power carr ied by the guided wave IAg12 and changes as pJOpagating along the z axis. Then 
the angle for the maximum radiation is de\'ia led from tha I of the linear case. The nonlinearity 
effects on the phase modulation. 

In this paper, the liquid crystal MBBA is chosen as the nonlinear medium. The parameters 
are..jil = 1.55, Vii = 1.52 , CI' = 0.6377 X 10-11 [m2jV2J,..\ = 0.514 5,lm, d = 111 m, A/..\ = 0.6, 
and hid = 0.1. 

At first , the ou tput grating, which is not im'oh'ed the incident wave in Eq. (13), is considered. 
Figure 2 shows the angle Orad for the maximum radiation as a fun ction of tlle propagating length 
kz. The kinds of the lines mean the incident power and are explained in the figure. It is found 
that Orad becomes larger as the guided wave propagates. So, the radiated wave is focu sed a' 
some plane over the grating. 

Next, we conside r the input grating with the leJlgth L = 2mm. In this paper, the incident 
wave is considered in the for m of a uniform plane wave. Figure 3 indicates the input effi ciency, 
which is defined as the ration of the power of the guided wa"e at z = L to t he total incident 
power Pm = lad2 L on the grating , as a fun ction of the deviat ion 6 0 from the incident angle 
of the linear grating which equals to the radiation angle. The kinds of the lines mean the 
incident power and are explained in the fi gu re. It is found that the input efficiency decreases 
as the input power increases and the angle for the maximum input efficiency de\'iates fr om that 
of the linea r graling. The input efficiency is maximum when the incident angle equals to the 
radiat io n one. As explai ned in Fig. 2, t.he radiation angle depends on the power of the guided 
wave which is exci ted by the incident wave. So, the input efficiency depe nds on the incident 
power. Figu re 4 shows the power of the guided wave at z = L as a function of the incident 
power P.n for 6 0 = 0.0060

• This figure shows that the nonlinear input grating might be useful 
for the bandpass power filter [9J or optical switch since the guided wave can be transmiued a 
large signal for input powers within a certain ra nge , and little of the signal for the input power 
above or below the ran ge. 

5. CONCLUSIONS 

We have analyzed the nonlinear grating couplers by using the singular perturbation technique. 
The proper ties of the au tput and inpu t grating couplers are examined numerically. The results in 
this paper ale the fundamental properties for Ihe design of the integrated optical circu ils. From 
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now, the properties of t he nonlinear gruing couplers ha\·e been investigated h om tIle practical 
point of view. This work was partially supported by a Scientific Research Grant-in-Aid (rom 
the Ministry of Education , Science, and Cultu re, Japan. 
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Fig. 1. Geometry of the problem. 
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Fig. 3. Input efficiency for various input 
powers. 
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Fig. 2. Angle of the maximum radiation 
for various guided powers. 
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Fig. 4. Guided power at the end of the 
grating against 1he input power. 
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