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Abstract
A new angular correlation phenomenon called the “angular memory effect” (AME) is applied
to interferometric SAR (InSAR). Two transmitters illuminate the surface and the scattered
waves arc observed at two receivers. The mutual coherence function (MCF) for the scattered
waves shows that the phase is linearly related to the average topographic height. This is extended
to the two-frequency MCF which shows the relationship between the pulse arrival times and the
height profile. The theoretical results are confirmed by experiments and numerical simulations.

1 Introduction

In recent years, interferometric technique has been applied to Synthetic Aperture Radar (In-
SAR) for obtaining global topographic maps and other geophysical applications, and extensive
theoretical and experimental studies have been reported {1, 2]. Recently, we have been involved
in the study of the angular correlation of scattered waves from rough surfaces and have made
detailed studies of the “memory effects” [3]. In this paper, we extend our previous study of the
memory effect to include the slowly varying average height variations and the relationship with
InSAR. Two transmitters at different angles §; and 6; illuminate the surface and the MCF for the
corresponding scattered waves at two different zngles 8, and 6, are calculated (Fig. 1). The theory
is based on the Kirchhoff approximation applicable to rough surfaces with large radii of curvature
{3]. It is shown that the phase of the MCF is related to the average surface profile, and therefore,
the height profile can be determined by the measurement of the correlation of the scattered waves.
The MCF is expressed in the memory diagram which shows the correlation as a function of the
second incident 8} and scattered &} for given reference incident 8; and scattered 8,. This gives the
general characteristics of the amplitude and the phase of the MCF, and clearly shows the effects
of the locations of the antennas on the sensitivity of the correlation. Next we extend the theory
to the two-frequency MCF and the time-domain response. It shows the relationship between the
pulse arrival time and the surface height profile. Millimeter wave experiments and Monte-Carlo
simulations are conducted and the results are compared with the theory.

2 The Mutual Coherence Function

Using the first-order Kirchhoff approximation and the stationary phase approximation, we ex-
press the mutual coherence function between waves observed at the scattered angles 8,, 6, due to
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waves incident at 6;, 6! as
< P(E)Y(K') = FF"G,Gly < II'" > (1)

where F = ~i[|K — Ki|?/(K, = Ki;)|r; F' = —i||[K’' - K2 /(K. - K!,)]""; G, and G, are the free-
space Green's functions; and < II’* >= [ dZ [ dZ’ exp(—it-Z —iv, f —i?' -3’ ~ v, f'); K. K; are the
propagation vectors; r is the reflection coefficient: the coordinates of the target are represented by
(Z, (%)) where f denotes the height above a flat reference plane; & = (£ — f(,-)zy, v, = (K - Ki)z;
and the prime represents the corresponding variables for the second beams.

The surface height f is decomposed into two parts f =< f. > +f;, where < f. > denotes the
slowly varying component representing the average topography height with slope m = a_<5§i, +
2L, and f, is the small fluctuating component having a Gaussian distribution with rms height o
and a Gaussian correlation function C(z4) = exp(—z3/!®) where  is the correlation length. For the
antenna patterns, we use Gaussian beam waves |W|? = exp(—z2/L?) with L being the illumination
area . Following the approach used in [3], we were able to obtain a closed form solution.

<II" >=FiF ()
_ wl? 1 12 2 |ve + M, 212
Fio= (el — ot expl- LT 3)
2 vil®
F, = (mL%)exp[- 1 Jexp[—iv.qg < fo >] (4)

where D(zg) = 2 < f2 > (1 = C(zq)); T = (1/2)E +T), Fa = (F - '), 0 = (1/2)(3 + 7'),
g =7 — 7, vze = (1/2)(v; + v1), and v,y = v, — ).

The effects of the average topographic height are now visible. The degree of correlation depends
on its slope m in Eq. (3). The average height < f. > produces a phase shift ¢ = v;4 < fc > in
Eq. (4).

3 The Two-Frequency MCF

The MCEF is applicable for continuous wave (CW). For pulse problems such as InSAR, we
need the two-frequency MCF [4}, which is the correlation (in the frequency domain) of two waves
(already at different angles) at different frequencies. The Fourier transform of the two-frequency
NCF then gives the ACF in the time domain. The correlation of the two scattered waves Es(t;)
and E.(t2) at two different times ¢; and t3 can be written as [4]

< Es(t1)Eq(ta) >= //dwldszi(wl)Ui'(wz)rexp(—iwltl + iwsty) (8)

where T is the two-frequency MCF given in the previous section; U;(w) = [ ui(t) exp(iwt) is the spec-

trum of the transmitted pulse u;(t) assumed to have a Gaussian profile u;(t) = A, exp(—iwot) exp(—t2/T2).
We now study the effects of the pulse arrival times on the interferometric phase ¢ = v;q < fc >.

Thus the two-frequency MCF is written as (ignoring other factors)

r= e—iu:d<f:>eik(ﬂg+R2)—ik'(R'l+R;) (6)

where R; and Rj are the distances from the reference transmitter and receiver to the flat surface,
and similarly for the primed variables. Eq. (5) can now be evaluated and the result is (ignoring
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other unimportant factors)

< Eyo(t1)Eq(ta) > o exp[—(ve < fe > fe+t. — Refc)?) exp|—iwo(1a < fo > Jc+ta — Ra/c)]
exp[—(v < fe > fc+ ta — Ra/c)?/(2T2)] )

where 7z = (cosf+cos 6;) — (cos 8’ +cos 8}), v. = (1/2)[(cos @+ cos 8;) + (cos & +cos b)), tg = t; —to,
te = (1/2)(t1 + t2). Rg = (R1 + R2) — (R} + R%), and R, = (1/2)[(R1 + R2) — (R} + R})].

The second exponential term gives the total phase shift due to different observing angles
(wova < fe > [c). different observing times (wotq), and different ranges (woRqfc). The third
exponential term yields a small decrease in the correlation, in addition to the decorrelation in the
previous section. The first exponential term provides the arrival time of the pulses (the peak of
the exponential), which is on average R./c (average propagation path), minus v. < f. > /c (earlier
time due to the average topographic height).

4 The Millimeter-Wave Experiment and Monte-Carlo Simulation

To validate the predicted phase from the theory, we performed millimeter-wave scattering
experiments (MMWE) at A = 3 mm (f = 100 GHz). The experimental setups and procedures
are well documented in [5]. The antennas were scanned along the memory line for high level
of correlation {3], which implies higher accuracy in the phase measurement. For given reference
and scanning angles, we raised the test surface in the vertical direction from zero to 17X (5 cm).
This simulates the average topography height. We also carried out Monte-Carlo simulation using
the banded matrix iterative approach/canonical grid (BMIA/CAG) method [6]. Rough surfaces
of different characteristics were used to study their effects on the interferometric phases, and to
demonstrate the robustness of using the AME technique to get the phase of InSAR. Comparison
between numerical and theoretical results at normal reference incident angles is shown in figure 2
for (0,1) = (0.25X.0.6)) and 6} = 2.5° and 5°. For the MMWE, we chose a rough surface with
(o,1) = (0.25X,0.25)) and measured the phase. Comparisons between theoretical, numerical and
experimental results are shown in figure 3. The uncertainty in the measured phase is also shown
as error bars.

5 Conclusion

We have shown that the AME can be applied to InSAR for the retrieval of topographic height.
The interferometric phase is not sensitive to the surface roughness, thus showing the robustness
of the technique. Validation of the theory by performing MMWE and numerical simulation yields
good agreement.
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Figure 1: The scattering geometry.

Figure 2: Interferometric phases: theoretical (solid),
numerical (dotted). Reference angles (6;,6,) =
(0°,0°). Upper curves (8; = 5°), lower curves (6] =
2.5%).
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Figure 3: Interferometric phases: theoretical (solid),
numerical (dotted), experimental (dashed). Refer-
ence angles (6;,6,) = (0°,0°); 8} = 5°.



