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1. Introduction

The subject of this paper is the field of a three-dimensional (3D) partially finite periodic
array of lossless magnetodielectric spheres illuminated by a plane wave propagating in a direction
parallel to the array axis; that is, with the propagation vector of the plane wave normal to the
interface between the array and free space. By “partially finite” we mean that the array is finite
in the direction of the array axis and is of infinite extent in the directions transverse to the array
axis. The work is based on our earlier investigations of traveling waves on linear [one-dimensional
(1D)] periodic arrays of acoustic monopoles [1], electric dipoles [2], and magnetodielectric spheres
[3]-[5], using a spherical-wave source scattering-matrix formulation, and the extension of the
linear array work to two-dimensional (2D) and three-dimensional (3D) arrays of these scatterers
given in [6]. In these investigations we considered periodic infinite arrays of identical small
scatterers each characterized by a scattering coefficient that relates the field scattered from the
element to the field incident on the element, and assumed that only the fields of the lowest order
spherical multipoles (acoustic monopoles, electromagnetic dipoles) are significant in analyzing
scattering from the array elements. The focus of our investigations has been the k–β equation
(or diagram) — in our work more properly referred to as the kd–βd equation (or diagram) —
that relates the traveling wave electrical separation distance βd of the array elements in the
direction parallel to the array axis, to the corresponding free-space electrical (or acoustical)
separation distance kd, where k = ω/c is the free-space wavenumber with ω > 0 the angular
frequency and c the free-space speed of light. Our investigation of periodic arrays of lossless
scatterers has been motivated in part by the theoretical demonstration by Holloway et al. that
a doubly negative (DNG) material can be formed by embedding an array of spherical particles
in a background matrix [7]. Our work in the above references has confirmed the conclusion of
Holloway et al..

In this paper we apply the analyses we have performed to obtain the kd–βd equation for an
infinite periodic 3D array of magnetodielectric spheres, to obtain exact computable expressions
for the field of a partially finite periodic array of these elements when the array is illuminated
by a plane wave propagating in a direction parallel to the array axis. By treating partially finite
arrays of spherical scatterers we move considerably closer to being able to analyze actual models
of DNG materials constructed from periodic arrays of spherical particles than is possible with
our analyses of 3D infinite arrays. Details and derivations that space does not permit us to give
here are given in full in [6].

2. Analysis

We investigate the field excited by a plane wave incident from free space on a 3D periodic
partially finite array of lossless magnetodielectric spheres, using a method due to Foldy [8].
The array is finite in the direction of the array axis and infinite in the directions transverse
to the array axis. The direction of incidence of the illuminating plane wave is parallel to the
array axis, normal to the interface between the array and free space. It is assumed that the
spheres can be modeled by pairs of crossed electric and magnetic dipoles, each of the dipoles
perpendicular to the array axis. The z axis of a Cartesian coordinate system is taken to be
the array axis and N+1 equispaced planes parallel to the xy plane of magnetodielectric spheres
are located at x = nd, n = 0, 1, 2, · · · , N . In each plane the spheres are centered at
(x, y) = (mh, lh), l, m = 0, ±1, ±2, · · · with the electric and magnetic dipoles oriented in
the x and y direction, respectively. The electric and magnetic field vectors of the incident plane
wave illuminating the array from the left are

Ex,inc(z) = eikz, Hy,inc(z)/Y0 = eikz (1)
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so that all spheres in any plane of the array are excited identically. We let En
x (zn) and Hn

y (zn)
be the external electric and magnetic fields, respectively, incident on a sphere in the nth plane,
with zn = nd, n = 0, 1, 2, · · · , N , and make use of the scattering equations

b−n = S−En
x(zn), b+n = S+Hn

y (zn)/Y0 (2)

where b− and b+ are the coefficients of the scattered electric and magnetic dipole waves, respec-
tively, and S− and S+ are the normalized magnetodielectric sphere electric and magnetic dipole
scattering coefficients, respectively, given by

S− = −i
3
2

bsc
1 , S+ = −i

3
2

asc
1 (3)

with bsc
1 and asc

1 the Mie electric and magnetic dipole scattering coefficients, respectively, given by
[9, sec.9.25, eqs.(11),(10)]. We then obtain expressions for En

x (zn) and Hn
y (zn)/Y0 by summing

the contribution of the incident plane wave eikzn and the contribution of the fields scattered
from all the array elements other than the (0, 0, zn) sphere

En
x (zn) = eikzn+

1
(kh)3

{
N∑

j=0
j 6=n

S−Ej
x(zj) σ11(|j−n|d)−

N∑

j=0
j 6=n

S+

Hj
y(zj)
Y0

σ12[(j−n)d]+ S−En
x (zn) σ2

}
(4a)

and

Hn
y (zn)
Y0

= eikzn +
1

(kh)3

{
N∑

j=0
j 6=n

S+

Hj
y(zj)
Y0

σ11(|j−n|d)−
N∑

j=0
j 6=n

S−Ej
x(zj)σ12[(j−n)d]+S+

Hn
y (zn)
Y0

σ2

}
(4b)

where

σ11(|j − n|d) =
∞∑

m=−∞

∞∑

l=−∞

eikhρmljn

ρmljn

[
−2i

ρmljn

(
kh +

i
ρmljn

)
m2

ρ2
mljn

+

(
(kh)2 +

ikh

ρmljn
− 1

ρ2
mljn

)
l2 + [(j − n)d/h]2

ρ2
mljn

]
(5a)

σ12[(j − n)d] =
∞∑

m=−∞

∞∑

l=−∞

eikhρmljn

ρmljn

(
(kh)2 +

ikh

ρmljn

)
(j − n)d/h

ρmljn
(5b)

and

σ2 =
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikhρml

ρml

[
−2i
ρml

(
kh +

i
ρml

)
l2

ρ2
ml

+
(

(kh)2 +
ikh

ρml
− 1

ρ2
ml

)
m2

ρ2
ml

]
(6)

where
ρmljn = ρml|j−n| =

√
m2 + l2 + [(j − n)d/h]2, ρml =

√
m2 + l2 (7)

and thus we have a system of 2(N +1) equations for the 2(N +1) unknowns En
x (zn), Hn

y (zn)/Y0,
n = 0, 1, 2, · · · , N

[
1 − S−σ2/(kh)3

]
En

x (zn)− S−
(kh)3

N∑

j=0
j 6=n

σ11(|j−n|d)Ej
x(zj)+

S+

(kh)3

N∑

j=0
j 6=n

σ12[(j−n)d]
Hj

y(zj)
Y0

= eikzn

(8a)
[
1 − S+σ2/(kh)3

] Hn
y (zn)
Y0

− S+

(kh)3

N∑

j=0
j 6=n

σ11(|j−n|d)
Hj

y(zj)
Y0

+
S−

(kh)3

N∑

j=0
j 6=n

σ12[(j−n)d]Ej
x(zj) = eikzn .

(8b)
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Rapidly convergent expressions for σ11, σ12, and σ2 are obtained in [6, sec.11.3]. It is then
straightforward to solve the system of equations (8) for the values of En

z (zn) and Hn
y (zn)/Y0.

The field at any point on the array axis (other than at elements of the array) can then be
calculated using (4) with En

z (zn) and Hn
y (zn) replaced by Ez(z) and Hz(z), and by replacing j

and n by n and z/d, respectively, in the expressions for σ11 and σ12. Given values of Ex(z) we
can calculate the reflection coefficient of the wave scattered back in the negative z direction for
z < 0 as well as the transmission coefficient of the wave traveling in the positive z direction for
z > Nd. Since the amplitude of the plane wave incident on the partially finite array is 1, the
reflection coefficient, R, is the complex coefficient of the wave e−ikz for z < 0 with R obtained
from the equation

R = Ex(z) eikz, z < 0 . (9)

The complex transmission coefficient can be obtained from the equation

T = [Ex(z) + eikz ] e−ikz, z > Nd . (10)

3. NUMERICAL RESULTS

In this section as an example of the reflection coefficient curves for partially finite arrays of
magnetodielectric spheres we show plots of the reflection coefficient for a partially finite array of
diamond spheres with εr = 5.84, µr = 1. The value of N is 100 (that is, there are 101 equispaced
infinite planes of spheres normal to the array axis), and the ratio of the radius of the spheres, a,
to the separation of adjacent sphere centers, d, is 0.45. We show plots for two cases, one where
there is no loss, and one with loss inserted into the propagation constant of the incident plane
wave when calculating the values of En

x (zn) and Hn
y (zn)/Y0, n = 0, 1, · · · , N from (8). The value

of the loss constant, ε, is chosen via the equation e−Nkdε = 10−P with P = 1. Given the value
of ε, the values of the incident plane wave, eikz , at the locations z = zn = nd, n = 0, 1, · · · , N

in the RHS of (8) are then multiplied by the respective factors e−εnkd, n = 0, 1, · · · , N . The
purpose of inserting loss is to reduce the multiple interactions between the leading and trailing
interfaces of the partially finite array, thereby producing a reflection coefficient that is nearly
equal to that of the leading interface alone.

In Fig. 1 we show a plot of the magnitude of the reflection coefficient for the partially finite
lossless diamond array. The pronounced oscillations of the pattern are the result of reflections
between the two ends of the array. Thus, the array behaves somewhat like a Fabry-Perot
resonator. The intervals of the plot where the magnitude of the reflection coefficient equals
one correspond exactly to the bandgaps in the kd–βd diagram of an infinite periodic array of
diamond spheres (see [6, fig. 21]), that is, the intervals of kd where no traveling wave exists to
convey power from one end of the array to the other.

In Fig. 2 we show the plot of the magnitude of the reflection coefficient for the partially finite
diamond array with loss inserted into the incident plane wave, together with a plot for kd < 1 of
the magnitude of the reflection coefficient obtained from the Clausius-Mossotti bulk permittivity
and permeability for the infinite 3D diamond array [10, sec.8-1, eq.(3-35)],[6, sec.9.1]. The
oscillations of Fig. 1 have been considerably reduced. However, this loss decreases the magnitude
of the reflection coefficient in the stopbands to a value slightly less than one. Note that for values
of kd less than one there is excellent agreement between the lossy partially finite array reflection
coefficient and the Clausius-Mossotti reflection coefficient apart from a small interval of kd
between zero and about 0.1. This is to be expected since the derivation of the Clausius-Mossotti
bulk parameter expressions assumes a separation of the array elements sufficiently small so that
the array can be regarded as a homogeneous medium. As kd becomes smaller than 0.1, the
total thickness of the slab with decaying incident field (simulating a loss) becomes smaller than
a free-space wavelength and its scattering becomes weaker.
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Figure 1: Reflection coefficient of a lossless
partially finite 3D array of diamond spheres
with εr = 5.84, µr = 1, a/d = .45.

Figure 2: Reflection coefficient of a lossy
partially finite 3D array of diamond spheres
with εr = 5.84, µr = 1, a/d = .45.
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