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1. Introduction 
Recently, the refractive index can easily be controlled to make the periodic structures such as optoelectronic 

devices, photonic bandgap crystals, frequency selective devices, and other applications by the development of 
manufacturing technology of optical devices. Thus, the scattering and guiding problems of the inhomogeneous 
gratings have been considerable interest, and many analytical and numerical methods which are applicable to the 
dielectric gratings having an arbitrarily periodic structures combination of dielectric and metallic materials[1]-[4]  . 

 In this paper, we proposed a new method for the scattering of electromagnetic waves by inhomogeneous 
dielectric gratings with perfectly conducting strips[10] using the combination of improved Fourier series expansion 
method[5]-[7] and point matching method[8]-[9]. 

Numerical results are given for the transmitted scattered characteristics for the case of frequency loaded with three 
perfectly conducting strips for TE cases. The effects of the inhomogeneous dielectric gratings comparison with that 
of the homogeneous gratings[11] on the transmitted power are discussed. 

 
2. Method of Analysis 

We consider inhomogeneous dielectric gratings loaded 
with three perfectly conducting strips shown in Fig.1. 
The grating is uniform in the y-direction and the 
permittivity ( , )x zε  is an arbitrary periodic function of 
z with period p. The permeability is assumed to be 0µ . 
The time dependence is exp( )i tω−  and suppressed 
throughout.  

In the formulation, the TE wave is discussed. When 
the TE wave (the electric field has only the 
y-component) is assumed to be incident from 0>x  at 
the angle 0θ ,  

( )1 0 0sin cos( ) ik z xi
yE e θ θ−= ， 1 1 0k ω ε µ  (1) 

the electric fields in the regions 1 ( 0)S x ≤ , 2 (0 )S x D< < , and 3 ( )S x D≥  are expressed[10] as 
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Fig.1 . Structure of inhomogeneous dielectric 
gratings loaded with three perfectly conducting 
strips. 
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where λ  is the wavelength in free space, he wavelength in free space, (1) (1) (1) (2) (2), , , , ,nb A B A Bν ν ν ν  and (3)
nC  are 

unknown coefficients to be determined from boundary conditions. ( )j
nk ( 1, 3)j = is propagation constants in the 

x direction, and , ( ) ( , ), ( 1.2)k l
nh u lν

ν = ,the propagation constant and eigenvectors, are satisfy the following eigenvalue 
equation in regard to h [5] 

2h=U UＡ                                                      (5) 

where, 
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We obtain the matrix form combination of  metallic region C and the dielectric region C  using boundary 
condition ( 1) /[(2 1)] ; 1 (2 1)jZ j p N j N= − + = +∼ at the matching points  on x =  0, .and D  Boundary condition 
using Point Matching are as follows:  
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In the boundary condition at Eq.(6), and Eq.(7), it is satisfied in all matching points by using the orthogonality 
properties of 2 /{ }i nz pe π ,we get following equation in regard to (1) (1) (2) (2), , ,A B A and Bν ν ν ν
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Boundary condition on x d= are as follows: 
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In the boundary condition at Eq.(9), it is satisfied in all matching points by using the orthogonality properties of 
2 /{ }i nz pe π ,we get following equation in (1) (1) (2) (2), , ,A B A and Bν ν ν ν

 

}

1

1

j

j

Z C

Z C

⎫
⎪ ∈⎬
⎪
⎭

∈

( )lUi
( )lUi ( )

2

0( ) ( ) ( )
0

0 0 0
,

j j j

l

iNz i z iNzl l l
N Nk e k e k e−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H

829



(1) (1) (2) (2)
1 2 3 4+ = +R A R B R A R B                                                 (10) 

( ) ( ) ( ) ( ) ( )1 1 2 2 2(1)
1 2 3 4, ' , , , 'where R U D R U R U R U D  

We get following matrix form combined for the matching points at ( 1) /(2 1) ; 1, 2 1.iz i z N i N= − + = +  
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By using matrix relationship between (1)A , (1)B  (2)A , (2)B , we get the following homogeneous matrix equation in 
regard to (2)Aν ( 1 ~ 2 1)Nν = + . 
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The mode power transmission coefficients tρ  is given by 
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3. Numerical Analysis 
We consider the following profiles of inhomogeneous dielectric gratings: 
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The values of parameters chosen are 1 3 0ε ε ε= = , 0 0/ 0.5, 2.0 , 30da p ε ε θ= = = , 0/ 2.0dε ε = , 0/ 1.0aε ε = and 
/ 0.3D p = .The relative error are less than about 0.1% and the energy error is less than about 310−  for TE waves 

when we computed with 15N =  at / 1a b = and / 1.5p λ = . 
First, we consider the two strip gratings for the case of / 0d p = .Figures 2 shows tρ for various values of 

normalized frequency ( )p λ  for 1 0/ 1.0ε ε = and 2.0 at / 1a b = . From in Figs.2, the maximum of coupling 
resonance at / 1.5p λ <  moves toward smaller ( )p λ  as 1 0/ε ε  increases, and the effect of the /d p  is more 
significant at 1.2 1.7p λ< > . 

Figures 3 shows tρ for various values of normalized frequency ( )p λ  with the case of / 0.75b p =  for the 
same parameters as in Fig.2. We note that the characteristic tendencies for the effect of the /b p  are approximately 
same at 1.0p λ < , but for about 1.0 2.5p λ< > , the effect of the inhomogeneous dielectric gratings is more 
significant comparing with 1 0/ 1ε ε = . 

Figures 4 shows tρ for the various values of normalized frequency ( )p λ  with the case of 1 0 0/ / 1.5dε ε ε ε= =  
for the same parameters Fig.3. We note that the characteristic tendencies for the effect of the equivalent permittivity 
are approximately same.  

 Next, we consider the three strip gratings for the case of / 0.15d p = . 
Figures 5 shows tρ for various values of normalized frequency ( )p λ  with the same parameters as in Fig.4. We 

note that the characteristic tendencies for the effect of the /d p  are approximately same, but the effect of the 
/d p and /b p  is more significant for the maximum of coupling resonance at 1.9p λ ≈ comparing with the 

homogeneous case. 
 

4. Conclusion 
In this paper, we have proposed a new method for the scattering of electromagnetic waves by inhomogeneous 
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dielectric gratings loaded with perfectly conducting strips using the combination of improved Fourier series 
expansion method and point matching method.  

Numerical results are given for the transmitted scattered characteristics for the case of frequency loaded with the 
three perfectly conducting strips for TE cases. The effects of the inhomogeneous dielectric gratings comparison 
with that of the homogeneous case on the transmitted power are discussed. 

This method also can be applied to the inhomogeneous dielectric gratings having an arbitrarily periodic 
structures combination of dielectric and metallic materials. 
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Figure 3. ρt vs. /p λ  for the case of 0.75b p =  
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Figure 2. ρt vs. /p λ  for the case of 0.5b p =  
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Figure 4. Comparison with homogeneous gratings. 
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Figure 5. ρt vs. /p λ  for the case of 0.15d p =  
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