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1. Introduction 

The Wheeler method is adopted for measuring the radiation efficiency in wide frequency 
range because of its simplicity and accuracy in spite of the dips of the measured efficiency at 
discrete frequencies [1].  In the Wheeler method, we can determine the radiation efficiency 
by only measuring two reflection coefficients in free space and with a radiation shield, but fail 
to estimate the efficiency at the resonant frequency of the radiation shield [2].  Recently, 
Huang et al clarify that the dips is caused by the loss of the wall of the radiation shield at the 
resonant frequency of the cavity [3].  In this paper, we will analyze the dips of the efficiency in 
the improved Wheeler method [4] using a transmission line model, where the moving shorts 
are modeled by lumped resistors with small resistance.   
 
2. Outline of the Improved Wheeler Method [4] 

An antenna under test (AUT) can be considered as a two-port network which is fed at port 
1 and is connected to the load of the intrinsic impedance in free space at port 2.  Then, the 
radiation efficiency can be given by 
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where |S11| can be obtained by measuring the reflection coefficient of the AUT in free space.  
|S21| can be determined by measuring three or more reflection coefficients of the AUT in the 
waveguide with two siding shorts.  Shifting the sliding shorts is equivalent to connecting a 
variable reactance circuit at port 2 of the AUT network.  Then, the reflection coefficient is 
given by 
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where iΓ  is reflection coefficient of the reactance circuit and is located on an arc when 
varying the position of the sliding shorts.  We can find the center 0z  and the radius 0r  of 

the arc by the method of least squares, and then |S21|2 is given by 
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In the measurement, we use a straight waveguide (150 x 75 x 1,000 mm, inner size) with 
a squared aperture (80 x 80 mm) in the wide wall for inserting the AUT and two sliding shorts 
(147 x 72 x 500 mm) with a choke [4] as shown in Figures 1 and 2.  In this paper, a monopole 
with 40 mm length and 1 mm diameter is used as the AUT.  S parameters are measured by 
using a vector network analyzer, Agilent 8720ES, with 32 averaging. 
 
3. Transmission Line Model Analysis of the Efficiency Dips 

An equivalent transmission line model of the waveguide with two sliding shorts and the 
AUT is shown in Figure 3.  When two shorts are assumed to be lossless, the normalized 
admittance looking from port 2 of the AUT is given by 

RgLgi lcotjlcotjy ββ −−= ,      (4) 

where lL and lR are the distance from the center of the AUT to the left and right shorts, 
respectively.  And gg λπβ 2=  is the phase constant of the TE10 waveguide mode and gλ  

is the wavelength in the waveguide.  If the values of yi are not varied as lL and/or lR are varied, 
it is impossible to find the center and the radius of the arc.  From (4), many combinations of lL 
and lR are possible for yi =0 or yi = ∞± j .  In the following, n, n1, and n2 are positive integers.  

(A) Case of 2gRL nll λ=+  and 21 gL nl λ≠  and 22 gR nl λ≠ : 

When RL ll +  is fixed and lL and lR are varied, the dip of the efficiency is caused at 
the resonant frequencies where the condition 2gRL nll λ=+  is satisfied. A simple 

way to avoid these dips is to except the data of the above condition in finding the 
center and the radius of the circle. 

   (B) 21 gL nl λ=  or 22 gR nl λ= : 

When lR is fixed and lL is varied, the dip of the efficiency is caused at the 
frequencies where the condition 22 gR nl λ=  is satisfied.  A simple way to avoid 

these dips is to measure the reflection coefficients sliding both shorts. 
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Fig.2: Sliding short with choke [4]. 
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Fig.1: Waveguide with squared aperture. 
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In practice, the dips of the efficiency are observed in a certain frequency range. For 
example, the above data exception must be done in 3%± range of the center frequency of the 
dip, because the contribution of the wall loss can not be ignored at the resonant frequency 
and in its neighborhood.  The effect can be included in the transmission line model by 
replacing two shorts with two lumped resistors with small resistance, rc.  Then, the 
normalized admittance looking from port 2 of the AUT is given by 
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This expression shows the bandwidth of the dips if the normalized resistance, rc, is properly 
selected.  The effect of the wall loss will be examined through following two examples. 

(A) Case that one sliding short is fixed and the other is movable:  
For simplicity, S11=0 is assumed.  In Figure 4, the relations between the 

frequency and |S21|2 are shown for lL= 130, 120, 110, 100, 90, and 80 mm, when 
rc=0.003.  We can see that the bandwidth and the center frequency of the dip are 
dependent on the distance between the AUT and the sliding short.  Therefore, the 
dips can be removed from the measured frequency band by adjusting the position of 
the sliding short.  Figure 5 shows a comparison of our experimental result with the 
above result.  We can find a good agreement with each other.  This means that our 
transmission line model is valid for explaining the dips of the efficiency. 

(B) Case that both sliding shorts are movable: 
lΔ  denotes the distance from the center of the AUT to the center of two sliding 

shorts. For n=2, the normalized admittance given by (5) reduces to 

   
ltanr

)ltan(r
y

gc

gc
i Δ+

Δ+
=

β

β
22

212
.      (6) 

We can plot the relation between the reflection coefficient )y()y( iii +−=Γ 11  and 
the argument lgΔβ  as shown in Figure 6 (red solid line), when rc=0.003.  In the 

neighborhood of local maximums but except at the local maximums, we can find that  
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Fig.3: An equivalent transmission 
line model. 
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Fig.4: |S21|2 versus frequency when lL is fixed

and lR is varied when rc=0.003. 
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the magnitude of the reflection coefficient || iΓ  is not equal to unity.  This means 

that the dips of the efficiency are observed in the neighborhood of the nodes of the 
standing wave.  Conversely, we can measure the efficiency without dips when 0=Δl , 
that is, RL ll = . 

 
4. Conclusion 

In this paper, we introduce a simple transmission line model to clarify the mechanism of 
the dips of the efficiency when using the improved Wheeler method.  We have succeeded to 
explain the behavior of the dips by considering the loss of the short plane.  And, the 
bandwidth of the dips can be also simulated by the model if the loss is properly estimated.  
Although many experimental data can not be included for the lack of the space, the results 
derived from the model are well consistent with our experimental results.  This fact shows the 
validity of our transmission line model.  In future, an efficiency measurement with no dips in a 
desired frequency range will be realized by restricting the moving range of the sliding shorts. 
 
References 
[1] H. G. Schantz, “Radiation efficiency of UWB antennas,” Proc. 2002 IEEE UWBST Conf., 

pp. 351-355, May. 2002. 
[2] M. Muramoto, N. Ishii, and K. Itoh, “A study on radiation efficiency measurement of a small 

antenna,” Trans IEICE B-II, vol. J78-B-II, no. 6, pp. 454-460, June 1995. (in Japanese) 
[3] Y. Huang, R. M. Narayaman, and G. R. Kadambi, “Electromagnetic coupling effects on the 

cavity measurement of antenna efficiency,” IEEE Trans. Antennas Propagat., vol. 51, no. 
11, pp. 3064-3071, Nov. 2003. 

[4] R. H. Johnston and J. G. McRoy, “An improved small antenna radiation efficiency 
measurement method,” IEEE Antennas and Propagation Magazine, vol. 40, no. 5, pp. 
40-48, Oct. 1998.  

0 0.5 1.0 1.5 2.0
-1.0

-0.5

0

0.5

1.0

Γ i

(βgΔl)/π

 n: odd  n: even

rc=0.003

 
Fig.6: the distance between the center of the 

 AUT and the center of two sliding shorts versus
 reflection coefficient of the reactance circuit. 
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Fig.5: Comparison of measured efficiency 
with simulated |S21|2 when lL=130 mm. 
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