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Abstract 
 
A rigorous full-wave cavity model is developed for 2D via-
less (i.e. uni-planar) metallic periodic structures, which may 
or may not have a PEC ground plane. This model considers 
all the homogeneous material blocks in these structures as 
coupled electromagnetic cavities. This coupled cavity 
problem is then solved using magnetic vector potential. The 
via-less artificial magnetic conductor (AMC) surfaces are 
analyzed using this cavity model and the wave reflection 
coefficients are calculated for normal incidence case. The 
results show good agreement with the full-wave HFSS 
simulation results. To confirm the accuracy of this method, 
we also compare the electric fields calculated using the cavity 
model and HFSS.  
 

1. INTRODUCTION 
 
  Usually the resonant phenomena of AMC surfaces are 
analyzed using transmission line models. For example, Yang 
[1]et. al. considered the substrate as an admittance load to the 
unit metal patches, and Ying [2]et. al. considered that the 
wave propagates and is reflected under the metal patches 
along the polarization direction of the incident wave. These 
transmission line models can only approximately determine 
the AMC resonant frequencies. One cannot get the 
information at the other frequencies using these simple 
models. 
 
  In this paper, we investigate a cavity model for 2D via-less 
metallic periodic structures. We expand the field in each 
cavity in forms of periodic Bloch modes and determine mode 
coefficients by imposing field continuity in the aperture areas.  
This cavity model gives the clear understanding about how a 
2D periodic structure behaves as a perfect magnetic conductor 
(PMC). The reflection coefficients and the field distributions 
calculated using this model are compared to the simulation 
results of HFSS. Good agreements have been found. 
 

2. CAVITY MODEL 
 
We only analyze a unit cell of the 2D periodic structure, 

shown in Fig. 1, and apply periodic boundary conditions on 

the four sides. The bottom surface is a PEC and the top 

surface is open. Along the x  direction the lattice constant is 

a ; along the y  direction the lattice constant is b . 

 
Fig. 1: Unit cell of a 2D via-less periodic structure. The shaded area is the 
metal patch. In this cavity model, the unit cell is divided into two cavities: 

Cavity 1 and Cavity 2 

 

  The shaded area represents the metal area of the unit cell and 

the gaps represent apertures or slots. We consider the problem 

as two cavities coupled by equivalent magnetic currents in the 

apertures of the metal layer. Using the equivalence theorem 

and aperture theory we separate the unit cell into two coupled 

cavities to solve the Maxwell Equations. Let us name them as 

Cavity 1 and Cavity 2 as shown in Fig. 1.   

 

 
(a)                                                (b) 

Fig. 2: (a) Cavity 1 with open surface at top and PEC at bottom. Equivalent 
magnetic currents (shown in pink) exist just above the bottom PEC. (b) 

Cavity 2 with PEC surfaces at top and bottom. Equivalent magnetic currents 
(in pink) exist just below the top PEC. 

 

In Cavity 1 (i.e. hz ≥ ) shown in Fig. 2(a), the top boundary 

condition is open, while the bottom boundary condition 

consists of equivalent magnetic currents just above the bottom 
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PEC. These equivalent magnetic currents exist in the area 

where the original structure (in Fig. 1) has apertures. There 

are two types of sources in this cavity: one is the incident 

wave iE
�

and the others are the equivalent magnetic currents 

tot
yx EM =  and tot

xy EM −= appearing in the aperture areas 

of the unit cell. The total scattered field totE
�

in Cavity 1 

is sr
tot EEE

���

+= , where rE
�

is the reflected wave when an 

incident wave impinges on an infinite PEC surface and sE
�

 is 

the electric field created by equivalent magnetic currents.  

 

In Cavity 2 ( hz ≤≤0 ) shown in Fig. 2(b), the top 

boundary condition consists of equivalent magnetic currents 

just below the top PEC. The bottom boundary is the PEC 

ground plane. There is only one type of source: the equivalent 

magnetic currents tot
yx EM −=  and tot

xy EM = appearing in 

the aperture areas. Because there is a PEC ground plane in 

Cavity 2 at 0=z , the total scattered field is s
tot EE

��

= , 

where sE
�

 are the electric field created by equivalent 

magnetic currents and their images formed by the two PEC 

surfaces.  

 

To find sE
�

 in Cavity 1 and Cavity 2, we need to solve 

Maxwell Equations in the “waveguide” bounded by two pairs 

of Bloch periodic boundaries, opened at the two ends and 

excited by equivalent magnetic surface currents and their 

images. We begin with the wave equations for magnetic 

vector potential mA
�

 as follows: 

)(22
p

mm zz
j
M

AkA −−=+∇ δ
ωµ

�
��

                               (1.1) 

mAjE
��

×∇−= ωµ                                                         (1.2) 

mAH
��

×∇×∇=                                                           (1.3) 

yMxMyxM yx ˆ2ˆ2),( +=
�

                                                (1.4) 

   It is important to introduce the delta function into (1.1). 

Let yAxAA mymxm ˆˆ +=
�

 and we get two scalar non-

homogeneous wave equations: 
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The general solutions of equations (2.1) and (2.2), the non-

homogeneous, second-order partial differential equations for 

2D periodic structures, are: 
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Here we notice that )()( nFYmFX are eigenmodes of hollow 

waveguides bounded by Bloch periodic boundary conditions. 

The sum of these modal functions, weighted with coefficients 

mna , gives the full-wave solution including both free and 

bounded waves or evanescent waves. To differentiate the 

solutions for Cavity 1 and Cavity 2, we use the superscripts 

)2,1(  in equations (3.1) and (3.2). The superscript yx,  

represents the solutions excited by xM or yM . The 

superscript m  represents the magnetic vector potential. The 

subscript mn  represents the sequence of modal functions 

)()( nFYmFX  given below. These modal functions are the 

same in Cavity 1 as in Cavity 2:  
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(a) 

 
(b) 

Fig.3: Electric field for the square patch AMC case in Table 1 calculated 
using the cavity model and HFSS. (a) Electric field at point (0,0,5.08mm) at 

1GHz. (b) Electric field at point  (-4.5,0,1.57mm) at 1GHz. 

 
By imposing the continuity condition for electric and 
magnetic fields at the aperture area, we can derive a linear 
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system of equations for unknowns y
mna )2,1( and x

mna )2,1( . We 

define 
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 Through solving this linear system, we find the full wave 
solution for the 2D via-less, printed metallic periodic 
structure.  
 

3. FIELD DISTRIBUTION 
 
To confirm the accuracy of cavity model, the electric field 
calculated using the cavity model is compared to that 
obtained using HFSS for the square patch AMC surface listed 
in Table 1. We select two points one in the far field and the 
other at the aperture. Figs. 3(a) and (b) show good agreement 
for both far field and near field.  

 
(a) 

 
(b) 

Fig.4: co-polar and cross-polar coefficients excited by an xE -polarized 

normally incident wave. (a) Mode coefficient 
y
mb 0 . (b) Mode coefficient 

x
mb 0 . 

Figs. 4(a) and (b) show the mode coefficients 
)(

0
y

mb and 
( )x
mb 0  of 

the same AMC, when a 1GHz xE polarized plane wave is 

incident in normal direction. We do not expect cross 

polarization between xE and yE components in this case.  

This is indeed reflected in calculated coefficients shown in 

the Fig. 1: 
)(
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any incident uniform plane wave 
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excite yM and xM , respectively. 

 
4. REFLECTION COEFFICIENT 

  

  To determine the wave reflection coefficient, we study sE
�

in 

detail in Cavity 1. When a x -polarized incident wave 

normally impinges on the AMC surface, only yM is excited 

in the aperture. In this case 
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So this 00 mode is the propagating wave which satisfies 

ri θθ = , where iθ  is the incident angle and rθ  is the 

reflected angle of the 00 mode. Besides the 00 mode, there 
can be a series of the other higher modes, which generally are 
evanescent modes when the frequency is low enough. With 
increasing of frequency, the higher modes may become 

propagating waves, but they do not satisfy ri θθ = . So they 

are not ordinary reflected waves. Here we assure that only the 
00 mode propagates. (This is the case with most AMC 
surfaces at the operating frequency.) Then, only 

y
xE )1(
00 contributes to the far field, and hence to the wave 

reflection coefficient. So the reflection coefficient R is: 
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To further confirm the accuracy of this cavity model, we 
compare the phase angle of the reflection coefficients of three 
types of AMC surfaces using both the cavity model and 
HFSS. The parameters of these three AMC surfaces are in 
Table 1.  

 
TABLE 1: PARAMETERS OF AMC SURFACES 

Square patch 
AMC [2] 

We select the same parameters as [2], except 
changing the size of the square metal patch to 

8mm. mmP 10= , mmLW 8== , 

mmhsubs 57.1= , 5.3=rε  

 
UC-PBG [1] We select the same parameters as [1]. 

milt 25= , mila 120= , milw 10= , 

mild 5.27= , milg 10= , milg 201 = . 

2.10=rε . 

 
Dual-band 
planar [4] 

We select the same parameters as [4]. 

mila 5= , milb 40= , milc 100= , 

mild 120= , mile 20= , milf 5.27= , 

milh 25= , 2.10=rε . 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig.5:  Reflection phase angle calculated using the cavity model and HFSS. 
(a) Square patch AMC lower band.   (b) Square patch AMC upper band.  

(c) Dual-band planar AMC lower band. (d) Dual-band planar AMC upper 
band. (e) Single AMC band of UC-PBG 

 
 Using the cavity model, we calculate reflection phase based 
on equation (6). For the square patch AMC, the infinite series 

are truncated at ]15,...,0,...,15[, −∈nm . For the other two 

AMC surfaces, the infinite series are truncated at 

]20,...,0,...,20[, −∈nm . In HFSS, we integrate xE on a 

surface normal to z direction and average phase angle of the 
reflection coefficient in this area. Figs. 5(a)-(e) compare the 
results obtained using the cavity model with those obtained 
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using HFSS for several AMC bands of the three AMC 
surfaces listed in Table. 1  
 
In general, we note a shift in frequency between two results. 
Depending on the surface and band, this shift is in the range 

of %1.8%4.0 − . Always the cavity model predicted a 

resonant frequency that is less than what is predicted by 
HFSS.  
 
To test whether the AMC behaves as a perfect magnetic 
conductor (which has a reflection coefficient magnitude of 
unity in addition to zero phase), we also calculated the real 
and imaginary parts of the reflection coefficient using HFSS 
(based on equation (6)) and compared the results with those 
obtained using the cavity model. Figs. 6(a)-(b) show a good 
agreement between the two results. 

 
(a) 

 
(b) 

Fig.6: Real and imaginary parts of the reflection coefficient calculated using 
the cavity model and HFSS (based on equation (6)). (a) Lower band of square 

patch AMC. (b) Upper band of square patch AMC. 

 
If the surface behaves as an AMC at a certain frequency, we 

naturally expect 01 jR += , i.e. 2

)1(
00 =
i

y
x

E

E
 at hz = , the same 

as PMC boundary condition. As we expected the real part of 
R  is close to 1 and imaginary part of R  is near 0 at AMC 
frequencies in Figs. 6(a)-(b). In the end we understand that 
the AMC surface has the same propagating waves as PMC, 

which guarantees that the AMC behaves as a PMC in the far 
field. Of course, a PMC does not have evanescent waves like 
AMC. However it is just because of these evanescent modes 
around an AMC, a 2D periodic electric metallic structure can 
have the same far-field reflected wave as PMC. 

  
Here we briefly consider frequency selective surfaces (FSS) 
to complete the discussion. As we know, an FSS can provide 
total reflection or total transmission properties. The total 

reflection includes in-phase ( hzat
E

E

i

y
x == ,2

)1(
00 ) and �180  

out-of-phase total reflection ( hzatE y
x == ,0

)1(
00 ). The total 

transmission occurs when it behaves as a matched load to the 

input source ( hzat
E

E

i

y
x == ,1

)1(
00

). 

 
5. CONCLUSION 

 
A cavity model has been presented to analyze and understand 
the behaviour of 2D via-less (uni-planar) metallic periodic 
structures. It correctly describes both the far field and the near 
field of AMC surfaces. The wave reflection coefficients are 
calculated using the cavity model agree well with HFSS 
simulation results. This cavity model is general enough to 
analyze any 2D via-less periodic structures with or without 
PEC ground plane (including frequency selective surfaces). It 
can be extended to multi-layer printed EBG/FSS surfaces. 
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