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Introduction

A method for determination of the location, shape, and material properties of a 3D object from measure-
ments of the scattered �eld, when the object is successively illuminated by a number of known incident
�elds is presented. This work extends the method previously developed for reconstruction of 2D per-
mittivity and conductivity from electromagnetic measurements by a number of line sources surrounding
the unknown object (P.M. van den Berg, et al., Inverse Problems, No. 15, 1325-1344, 1999) to the more
complicated full-vector 3D inversion. In this paper, we consider inversion from cross-well electrode log-
ging data (static problem), cross-well induction logging data (di�usive problem), and electromagnetic
tomography data (electromagnetic problem).

Problem statement

We consider an object, B , of arbitrary bounded cross section. Let D denote the interior of a bounded
domain with piecewise smooth discontinuity interfaces. A Cartesian coordinate system is centered in D

with spatial points denoted by x = (x1, x2, x3). We assume that the unknown scatterer, B, is contained
in the object domain D. The �elds are assumed to be varied sinusoidal in time with frequency !. If the
vector Einc

j denotes an incident �eld with source located at xSj , then for each incident �eld, the total �eld
Ej in D is given by

Ej(x) = E
inc
j (x) +Esct

j (x) : (1)

Here, the vector E stands for the electric �eld vector either for static or electromagnetic problem. It is
well known that the total �eld satis�es the following domain integral equation

E
inc
j (x) = Ej(x)� [k2b +rr�]

Z
D

G(x� x
0)�(x0)Ej(x

0) dv(x0) ; x 2 D ; (2)

where

k2b =

8<
:

0 ;

i!�0�
0

b ;

and G(x) =

8<
:

1=4�jxj ; static

exp(ikbjxj)=4�jxj ; electromagnetic
(3)

In Eq. (2), the function � denotes the contrast of the material properties of the object with respect to
its embedding �0b, and given by

�(x) =
�0(x)� �0b

�0b
; with �0(x) = �(x)� i!�(x) ; (4)

where � and � are the electrical conductivity and the permittivity distribution. Note that for the
static/electrode and di�usive/induction problem, the complex electrical conductivity �0 reduce to a real
positive conductivity, �.
In the inverse scattering problem either the scattered electric potential V sct

j for the static problem or the

scattered magnetic �eld vector Hsct for the electromagnetic problem will be measured on data domain
S outside D. These integral representations are given by

V sct(x) = �r �

Z
D

G(x� x0)�(x0)E(x0) dv(x0) ; x 2 S ; (5)

and

H
sct(x) = �0br�

Z
D

G(x� x
0)�(x0)E(x0) dv(x0) ; x 2 S : (6)

In order to discuss our solution of the inverse scattering problem, we write our equations in an operator
form and we denote the electric �eld vector Ej by the symbol uj and the data quantities either the
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scattered magnetic �eld vectorHsct
j or scalar electric potential �eld V sct

j by fj . Then, the data equations
in Eqs. (5) and (6) are written symbolically as

fj = GS�uj ; x 2 S ; (7)

while, the object equations in Eq. (2) written as

uj = uincj +GD�uj ; x 2 D : (8)

The inverse scattering problem can now be formulated as follows: �nding � of the object domain D for
given fj at the data domain S, or solving the data equation in Eq. (7) for �, subject to the additional
and necessary condition that � and uj satisfy Eq. (8) in D.

Algorithm

A major observation is that the data equation contain both the unknown �eld and the unknown contrast
in the form of a product; it can be written as a single quantity, viz. the contrast source

wj(x) = �(x)uj(x) ; (9)

which can be considered as an equivalent source that produces the measured scattered �eld. The data
equation in Eq. (7) becomes

fj = GSwj ; x 2 S ; (10)

while the object equation in Eq. (8) becomes

uj = uincj +GDwj ; x 2 D : (11)

Substituting Eq. (11) into Eq. (9), we obtain an object equation for the contrast source rather than for
the �eld, viz.,

�uincj = wj ��GDwj ; x 2 D : (12)

Although the data equation in Eq. (10) is linear in the contrast source, it is a classic ill-posed equation.
Therefore, we recasted the problem as an optimization problem in which not only the contrast sources
were sought but also the contrast itself to minimize a cost functional. We de�ne the cost functional as
follows

F(wj ;�) = F (wj ;�)FTV(�; Æ) = [FS(wj) + FD(wj ;�)]FTV(�; Æ) ; (13)

where

F (wj ;�) =

P
j kfj �GSwjk

2
SP

j kfjk
2
S

+

P
j k�u

inc
j � wj +�GDwjk

2
DP

j k�u
inc
j k

2
D

; (14)

and

FTV(�; Æ) =

Z
D

p
jr�(x)j2 + Æ2 dv(x) : (15)

The �rst factor in the cost functional F contains the errors in the data equation and in the object
equation. The second factor in the cost functional F is the total variation (TV) term. This form of the
cost functional in Eq. (13) is chosen such that the optimization process itself determines the weight of the
TV-factor. The cost functional in Eq. (13) is based on two things: the objective of minimizing the error
in the data equations and object equations and the observation that the TV-factor, when minimized,
converges to a constant factor. The structure of the cost functional is such that it will minimize the TV-
factor with a large weighting parameter in the beginning of the optimization process, because the value
of F (wj ;�) is still large, and that it will gradually minimize more and more the error in the data and
object equations when the TV-factor has reached a nearly constant value. If noise is present in the data,
the data error term will remain at a large value during the optimization and therefore, the weight of the
TV-factor will be more signi�cant. Hence, the noise will, at all times, be suppressed in the reconstruction
process and we automatically ful�ll the need of a larger weight of the TV-factor when the data contains
noise. The factor Æ2 in Eq. (15) is introduced for restoring di�erentiability to the TV-factor. We have
chosen the value of Æ2 to be large in the beginning of the optimization and small towards the end. In
this way, the optimization will reconstruct the contrast in the �rst iterations in the normal way, before it
will apply the minimization of variation to shape the image further. In particular, we have chosen Æ2 =
FD;n�1, in which FD is the normalized error in the object equations. For a small number of iterations FD



is large, while it decreases for an increasing number of iterations. The algorithm involves the construction
of sequences f�ng and fwj;ng, for n = 1,� � �,N in the following manner.
Now suppose wj;n�1 and �n�1 are known. We update wj by

wj;n = wj;n�1 + �wj;nvj;n ; (16)

where �wj;n is a constant parameter and the update directions vj;n are functions of position. The update
directions are chosen to be the Polak-Ribi�ere conjugate gradient directions, which search for improved
directions when a change with respect to the directions of the last iteration occurs and restart the
optimization when practically no changes are made in the subsequent gradients. These update directions
are obtained as

vj;0 = 0 ; vj;n = gwj;n +
Re hgwj;n; g

w
j;n�g

w
j;n�1iD

hgwj;n�1; g
w
j;n�1iD

vj;n�1; n � 1 ; (17)

where gwj;n is the gradient (Fr�echet derivative) of the cost functional with respect to wj evaluated at wj;n�1

and �n�1. Explicitly, the gradient for the updating of the contrast source is found in terms of adjoint
operators G?

S and G?
D , respectively. With the update directions completely speci�ed, the parameter �wj;n

in Eq. (16) and is found explicitly by minimizing cost functional in Eq. (13). After wj;n has been updated,
the �eld uj;n is known from Eq. (11).
Now suppose �n�1 is known. We update � by

�n = �n�1 + ��ndn ; (18)

where ��n is a constant parameter and the update direction dn are functions of position. The update direc-
tions are again the Polak-Ribi�ere conjugate gradient directions, making the updating scheme consistent
with the updating of the contrast sources. These update directions are obtained as

d0 = 0 ; dn = g�n +
Re hg�n ; g

�
n � g

�
n�1iD

hg
�
n�1; g

�
n�1iD

dn�1 ; n � 1 ; (19)

where

g�n =
FTV(�n�1; F

1=2

D;n�1) g
D
n + F (wj;n;�n�1) g

TV
nP

j juj;nj
2

: (20)

The function gDn is the gradient of the numerator of FD in Eq. (13) given by

gDn =

 P
j wj;nuj;nP
j juj;nj

2
��n�1

!
=

P
j

�
�n�1uj;n � wj;n

�
uj;nP

j juj;nj
2

; (21)

and gTVn is the gradient of the TV-factor FTV in Eq. (13) given by

gTVn =
1

2
r �

2
4 r�n�1q

jr�n�1j
2 + Æ2

3
5 : (22)

The weighting of the gradients (see Eq. (21)) clearly depends on the errors in the data and object equations
F and the TV-factor FTV. The real-valued constant ��n in Eq. (18) is now found to minimize the cost
functional in Eq. (13). This minimization can not be calculated analytically and is therefore determined by
a numerical line minimization. In this procedure, we take as initial value for ��n the analytical expression
obtained by minimizing the cost functional F in absence of the TV-factor (FTV = 1).
Observe that we cannot start with wj;0 = 0 and �0 = 0, since then the cost functional in Eq. (13) is
unde�ned. Therefore we start with �nding the contrast sources that minimize the data error FS(wj;0).
Using gradient method, we arrive at

wj;0 =
kG?

Sfjk
2
D

kGSG
?
Sfjk

2
S

G?
Sfj : (23)

The function G?
Sfj is the back propagation of the data from the data domain S into the object domain

D. With this initial estimates wj;0, the initial �eld and contrast estimates are obtained by

uj;0 = uincj +GDwj;0 and �0 =

P
j wj;0uj;0P
j juj;0j

2
: (24)



Numerical Example

As a test example, we consider the con�guration given in Fig. 1 with the contrast function �1 = 0:6+0:2 i
and �2 = 0:3 + 0:4 i. The test domain D is a cubic with side length 3�, while the sources are located at
plane x1 = 3�=2 and the receivers at x1 = �3�=2. The homogeneous embedding is chosen to be vacuum,
therefore kb = 2�=� (�0b = �i!�0). In the inversion the test domain D is discretized into 14�14�14
subdomains. Thereby amounting to a total of 2744 unknowns complex contrast values. The synthetic
data are generated by solving the forward scattering problem numerically with a �ner discretization grid
(28�28�28 discretization points). In the inversion, we use 25 vertical magnetic dipole sources and 25
multi-components receivers. The reconstruction results from noise-free and data with 10% random white
noise are given in Fig. 2. As seen in this �gure, the results are quite reasonable despite the large variation
of the contrast function and limited amount of data (625 data points). At the conference, we will also
present the inversion results from cross-well electrode and induction logging data.
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Figure 1: The con�guration used to generate the synthetic data with the contrast function �
1
= 0:6 + 0:2 i

and �
2
= 0:3 + 0:4 i. In the inversion, we use 25 sources distributed uniformly at plane x1 = 3�=2 and 25

multi-components receivers at x1 = �3�=2.
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Figure 2: Slices of the 3D real-part of � distribution (top plots) and slices of the 3D imaginary-part of �

distribution (bottom plots). From left to right are the plots of the original pro�le, the reconstruction results from

noise-free data, and from data with 10% random white noise.


