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Abstract

The present paper formulates the electromagnetic scattering
by a structure consisting of a periodic array of circular
cylinder and another circular cylinder located in front of the
array. Periodicity of the structure is locally collapsed and the
standard formulations based on Floquet’s theorem cannot be
applied. In this paper, pseudo-periodic Fourier transform is
formally introduced to analyze the problem. This transform
makes the field components pseudo-periodic and they are then
expressed in the Rayleigh expansion outside the cylinders.
The recursive transition-matrix algorithm with the help of
Yasumoto et al’s formula for the lattice sums is used to
calculate the scattering by the periodic cylinder array.

1. INTRODUCTION

Electromagnetic scattering from periodic structures has been
extensively studied for a long time as wavelength and polar-
ization selective components in microwave, millimeter-wave,
and optical wave regions. Recently, structures in which the
periodicity is locally collapsed have also received much in-
terest because they induce distinct properties. One of the
most promising properties is the field localization caused by
defects in the electromagnetic bandgap structures that allows
realizing essential optical elements of wavelength size. For
example, a lump of defects may behave as a microcavity
resonator and a line defect may behave as a waveguide. The
computation of such structures has been mainly performed
with the finite differences time-domain method, the beam
propagation method, the method of fictitious sources, and the
recursive transition-matrix algorithm (RTMA)[1]. However,
these approaches are able to apply to the problems of scatterers
with finite extent, and the approaches for scatterer with infinite
extent has been limited to fully periodic structure with plane
wave incidence.

This paper proposes a novel formulation of the electro-
magnetic scattering from a circular cylinder backed by periodic
array of circular cylinders. The cylinders are infinitely long
and parallel to each other with identical separations, while one
cylinder is added in front of the array. To approach the prob-

lem, we introduce a new idea, which is the pseudo-periodic
Fourier transform (PPFT). This transform converts any field
component into a pseudo-periodic function, which is a product
of a periodic function and an exponential phase factor, and all
transformed components can be expanded in the generalized
Fourier series[2]. Hence, the transformed fields outside the
cylinder objects can be expressed by a superposition of plane
waves. The reflected and the transmitted waves of the periodic
cylinder array for plane wave incidence are derived by RTMA
with the help of Yasumoto et al’s formula for the lattice
sums[3], [4] though the scattering by the additional cylinder
is analyzed by the standard process of RTMA. The proposed
formulation is applied to a periodic cylinder array with an
additional cylinder for a line source excitation, and we present
the field intensity distribution near the additional cylinder.

2. FORMULATION

A. Setting of the Problem

The geometry under consideration is schematically shown in
Fig. 1. The structure consists of a circular cylinder and a
periodic array of circular cylinders that are infinitely long in
thez-direction and situated parallel to each other. The periodic
array consists of the identical cylinders with homogeneous
and isotropic media described by the permittivityεp, the
permeability µp, and the radiusap. One cylinder in the
periodic array is located at the origin and the other cylinders
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Fig. 1: Circular cylinder backed by periodic array of circular cylinders.
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are periodically spaced with a common distanced in the x-
direction. An additional cylinder with the permittivityεc, the
permeability µc, and the radiusac is located at(x, y) =
(xc, yc) (yc > ap + ac). The surrounding region is filled
by a lossless, homogeneous, and isotropic material with the
permittivity εs and the permeabilityµs. We deal with only
time-harmonic fields assuming a time-dependence ine−i ω t,
and the electromagnetic fields are supposed to be uniform in
the z-direction. Two fundamental polarizations are expressed
by TM and TE, in which the H and the E fields are respectively
perpendicular to thez-axis. The total field is expressed by the
sum of the incident fieldψ(i)(x, y), the scattered field from
the periodic cylinder arrayψ(s)

p (x, y), and the scattered field
from the additional cylinderψ(s)

c (x, y) in the following form:

ψ(x, y) = ψ(i)(x, y) + ψ(s)
p (x, y) + ψ(s)

c (x, y). (1)

The incident fieldψ(i)(x, y) is assumed to illuminate the
cylinders from the upper or lower regions and there exists
no source inside the structure−ap ≤ y ≤ yc + ac.

B. Pseudo-Periodic Fourier Transform and Rayleigh Expan-
sion

Let ψ(x, y) be a two-dimensional wave function satisfying the
following Helmholtz equation outside the cylinders:(

∂2

∂x2
+

∂2

∂y2
+ ks

2

)
ψ(x, y) = 0 (2)

where ks is the wavenumber in the surrounding media and
supposed to be real and constant. Here we introduce a trans-
form defined by

ψ(x; ξ, y) =
∞∑

m=−∞
ψ(x − m d, y) ei m d ξ (3)

which is implicitly assumed to be converge, and we call this
transform the pseudo-periodic Fourier transform (PPFT). The
inverse of PPFT (IPPFT) is formally given as

ψ(x, y) =
d

2 π

∫ π/d

−π/d

ψ(x; ξ, y) dξ. (4)

The differential operators in Eq. (2) are unchanged by PPFT,
and then the equation is transformed into the same form:(

∂2

∂x2
+

∂2

∂y2
+ ks

2

)
ψ(x; ξ, y) = 0. (5)

The transformed fieldψ(x; ξ, y) has a pseudo-periodic prop-
erty with the pseudo-periodd in terms ofx:

ψ(x − d; ξ, y) = ψ(x; ξ, y) e−i d ξ, (6)

and therefore can be expressed in the Rayleigh expansion[2]:

ψ(x; ξ, y) = f (+)(x; ξ, y − y′)t a(+)(ξ, y′)

+ f (−)(x; ξ, y − y′)t a(−)(ξ, y′) (7)

wherea(+)(ξ, y′) anda(−)(ξ, y′) denote the column matrices
generated by the amplitude of plane waves propagating in
the positive and the negativey-direction, respectively, and

f (±)(x; ξ, y) are the column matrices of the plane wave basis
sets given as(

f (±)(x; ξ, y)
)

n
= ei(αn(ξ) x±βn(ξ) y) (8)

with

αn(ξ) = ξ + n
2 π

d
(9)

βn(ξ) =
√

ks
2 − αn(ξ)2. (10)

C. Scattering by Periodic Cylinder Array

First, we consider the scattering by the periodic cylinder
array located aty = 0. The transformed fieldψ(x; ξ, y) near
the cylinder array is decomposed into the incident and the
scattered fields:

ψ(x; ξ, y) = ψ
(i)

p (x; ξ, y) + ψ
(s)

p (x; ξ, y), (11)

where the first term is PPFT ofψ(i)(x, y) + ψ
(s)
c (x, y) given

in Eq. (1).
Using Eq. (7), the incident field is expressed as

ψ
(i)

p (x; ξ, y) = f (−)(x; ξ, y)t a(−)(ξ, +0)

+ f (+)(x; ξ, y)t a(+)(ξ,−0) (12)

Here, we introduce the cylindrical wave expansions. LetZ
denote the cylinder functionsJ or H(1), and g(Z)(x, y) be
column matrices generated by the corresponding cylindrical
waves in such a way that itsnth entries are given as(

g(Z)(x, y)
)

n
= Zn(ks ρ(x, y)) ei n φ(x,y) (13)

with

ρ(x, y) =
√

x2 + y2 (14)

φ(x, y) = arg(x + i y). (15)

Then the incident fieldψ
(i)

p (x; ξ, y) in Eq. (12) is rewritten as

ψ
(i)

p (x; ξ, y) = g(J)(x, y)t b
(i)

0 (ξ) (16)

whereb
(i)

0 (ξ) denotes the column matrix giving the expansion
coefficients and derived as

b
(i)

0 (ξ) = P (−)(ξ)t a(−)(ξ, +0) + P (+)(ξ)t a(+)(ξ,−0) (17)

with (
P (±)(ξ)

)
n,m

=
(

i αn(ξ) ± βn(ξ)
ks

)m

. (18)

On the other hand, the scattered field can be expressed by
the sum of the outgoing wave from each scatterer. Therefore,
the scattered fields can be written as follows:

ψ
(s)

p (x; ξ, y) =
∞∑

l=−∞
g(H(1))(x − l d, y)t b

(s)

l (ξ). (19)

Because of the pseudo-periodicity of the transformed field,
Floquet’s theorem yields the following relation

b
(s)

l (ξ) = b
(s)

0 (ξ) ei l d ξ. (20)
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Then a RTMA technique developed by Yasumotoet al.[3], [4]
gives the relation betweenb

(s)

0 (ξ) andb
(i)

0 (ξ) in the following
form:

b
(s)

0 (ξ) =
(
T−1

p − L(ks d, ξ d)
)−1

b
(i)

0 (ξ) (21)

with

(L(ζ, η))n,m =
∞∑

l=1

H
(1)
n−m(l ζ)

[
ei l η +(−1)n−m

e−i l η
]

. (22)

The entries ofL(ζ, η) is given by the lattice sums, which are
known to converge very slowly. An efficient calculation of lat-
tice sums has been developed by Yasumoto and Yoshitomi[3],
and we use it for practical computation. Also, the square
diagonal matrixT p is the transition-matrix (T-matrix) of the
unit cylinder of the array in isolation. Concrete representation
of the T-matrix depends on the polarization, and the(n, m)th-
entries are given by

(T p)n,m = δn,m

×
√

εp

µp
Jn(ksap)J ′

n(kpap)−
√

εs

µs
J ′

n(ksap)Jn(kpap)√
εs

µs
H

(1)
n

′
(ksap)Jn(kpap)−

√
εp

µp
H

(1)
n (ksap)J ′

n(kpap)
(23)

for TM polarization, and

(T p)n,m = δn,m

×
√

µp

εp
Jn(ksap)J ′

n(kpap)−
√

µs

εs
J ′

n(ksap)Jn(kpap)√
µs

εs
H

(1)
n

′
(ksap)Jn(kpap)−

√
µp

εp
H

(1)
n (ksap)J ′

n(kpap)
(24)

for TE polarization, wherekp denotes the wavenumber inside
the cylinders in the periodic array andδn,m denotes Kro-
necker’s delta.

The scattered fieldψ
(s)

p (x; ξ, y) in Equation (19) can be
expressed in the Rayleigh expansion:

ψ
(s)

(x; ξ, y) =

{
f (+)(x; ξ, y)t Q(+)(ξ) b

(s)

0 (ξ) for y > 0

f (−)(x; ξ, y)t Q(−)(ξ) b
(s)

0 (ξ) for y < 0
(25)

with(
Q(±)(ξ)

)
n,m

=


2

βn(ξ) d

(
−i αn(ξ)±βn(ξ)

ks

)m

for m ≥ 0

2
βn(ξ) d

(
i αn(ξ)±βn(ξ)

ks

)−m

for m < 0
.

(26)

Then the scattering matrix that relate the Rayleigh coefficients
of the incident and the scattered fields is given as(

a(+)(ξ, +0)
a(−)(ξ,−0)

)
=

(
Sp,11(ξ) Sp,12(ξ)
Sp,21(ξ) Sp,22(ξ)

)(
a(−)(ξ, +0)
a(+)(ξ,−0)

)
(27)

with

Sp,11(ξ)=Q(+)(ξ)
(
T−1

p −L(ksd, ξd)
)−1

P (−)(ξ)t (28)

Sp,12(ξ)=I+Q(+)(ξ)
(
T−1

p −L(ksd, ξd)
)−1

P (+)(ξ)t (29)

Sp,21(ξ)=I+Q(−)(ξ)
(
T−1

p −L(ksd, ξd)
)−1

P (−)(ξ)t (30)

Sp,22(ξ)=Q(−)(ξ)
(
T−1

p −L(ksd, ξd)
)−1

P (+)(ξ)t. (31)

D. Scattering by Additional Cylinder

Next, we consider the scattering by the additional cylinder
located at(x, y) = (xc, yc). The transformed fieldψ(x; ξ, y)
near the additional cylinder is decomposed into the incident
and the scattered fields in the following form:

ψ(x; ξ, y) = ψ
(i)

c (x; ξ, y) + ψ
(s)

c (x; ξ, y). (32)

The incident field for the cylinderψ
(i)

c (x; ξ, y) is PPFT of
ψ(i)(x, y) + ψ

(s)
p (x, y) by using the notations in Eq. (1), and

also it is possible to express in the Rayleigh expansion and
the cylindrical wave expansion as follows:

ψ
(i)

c (x; ξ, y) = f (−)(x; ξ, y − yc)t a(−)(ξ, yc + 0)

+ f (+)(x; ξ, y − yc)t a(+)(ξ, yc − 0) (33)

= g(J)(x − xc, y − yc)t b
(i)

c (ξ) (34)

where relation betweena(±)(ξ, yc − 0) andb
(i)

c (ξ) are given
by

b
(i)

c (ξ) = P (−)(ξ)t F (xc; ξ, 0) a(−)(ξ, yc + 0)

+ P (+)(ξ)t F (xc; ξ, 0) a(+)(ξ, yc − 0) (35)

with

(F (x; ξ, y))n,m = δn,m ei(αn(ξ) x+βn(ξ) y). (36)

The scattered field is expressed by the sum of the outgoing
wave from the cylinder and written as

ψ
(s)

c (x; ξ, y) = g(H(1))(x − xc, y − yc)t b
(s)

c (ξ). (37)

The expansion coefficients are obtained as

b
(s)

c (ξ) = T c b
(i)

c (ξ) (38)

whereT c is the T-matrix of the cylinder and given by replacing
the subscriptp in Eqs. (23) and (24) byc. IPPFT yields

ψ(s)
c (x, y) = g(H(1))(x − xc, y − yc)t b(s)

c (39)

with

b(s)
c =

d

2 π

∫ π/d

−π/d

b
(s)

c (ξ) dξ. (40)

PPFT is applied to the scattered field Eq. (39), and we obtain

ψ
(s)

(x; ξ, y)

=

{
f (+)(x − xc; ξ, y − yc)tQ(+)(ξ) b(s)

c for y>yc

f (−)(x − xc; ξ, y − yc)tQ(−)(ξ) b(s)
c for y<yc

. (41)

Then the scattering matrix is given in the following form:(
a(+)(ξ, yc + 0)
a(−)(ξ, yc − 0)

)
=

(
a(+)(ξ, yc − 0)
a(−)(ξ, yc + 0)

)
+

∫ π/d

−π/d

(
Sc,11(ξ, ξ′) Sc,12(ξ, ξ′)
Sc,21(ξ, ξ′) Sc,22(ξ, ξ′)

)(
a(−)(ξ′, yc+0)
a(+)(ξ′, yc−0)

)
dξ′ (42)
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with

Sc,11(ξ, ξ′) =
d

2 π
F (−xc; ξ, 0) Q(+)(ξ) T c

· P (−)(ξ′)t F (xc; ξ′, 0) (43)

Sc,12(ξ, ξ′) =
d

2 π
F (−xc; ξ, 0) Q(+)(ξ) T c

· P (+)(ξ′)t F (xc; ξ′, 0) (44)

Sc,21(ξ, ξ′) =
d

2 π
F (−xc; ξ, 0) Q(−)(ξ) T c

· P (−)(ξ′)t F (xc; ξ′, 0) (45)

Sc,22(ξ, ξ′) =
d

2π
F (−xc; ξ, 0) Q(−)(ξ) T c

· P (+)(ξ′)t F (xc; ξ′, 0). (46)

E. Scattering from Entire Structure

When the fields are computed over the entire structure, nu-
merical experiments may show, in many cases, numerical
instabilities because of the growing exponential functions. To
avoid this difficulty, we use the method proposed in Ref. [5].
Equations (27) and (42) that relate the Rayleigh coefficients
must be satisfied for arbitraryξ ∈ [−π/d, π/d]. Here we
take L sample points{ξl}, and the integration in Eq. (42) is
approximated by an appropriate numerical integration scheme
in the following form:(

a(+)(ξl, yc + 0)
a(−)(ξl, yc − 0)

)
=

(
a(+)(ξl, yc − 0)
a(−)(ξl, yc + 0)

)
+

L∑
l′=1

wl′

(
Sc,11(ξl, ξl′) Sc,12(ξl, ξl′)
Sc,21(ξl, ξl′) Sc,22(ξl, ξl′)

)(
a(−)(ξl′ , yc+0)
a(+)(ξl′ , yc−0)

)
(47)

where wl denotes the weight factor. To treat the discretized
Rayleigh coefficients systematically, we introduce the follow-
ing column matrices:

â(±)(y) =

a(±)(ξ1, y)
...

a(±)(ξL, y)

 (48)

and then Eqs. (27) and (47) are rewritten as follows:(
â(+)(+0)
â(−)(−0)

)
=

(
Ŝp,11 Ŝp,12

Ŝp,21 Ŝp,22

) (
F̂ â(−)(yc − 0)

â(+)(−0)

)
(49)(

â(+)(yc + 0)
â(−)(yc − 0)

)
=

(
Ŝc,11 Ŝc,12

Ŝc,21 Ŝc,22

) (
â(−)(yc + 0)
F̂ â(+)(+0)

)
(50)

with

F̂ =

F (0; ξ1, yc) 0
. ..

0 F (0; ξL, yc)

 (51)

Ŝp,nm =

Sp,nm(ξ1) 0
.. .

0 Sp,nm(ξL)

 (52)

Ŝc,nm =

w1Sc,nm(ξ1, ξ1) · · · wLSc,nm(ξ1, ξL)
...

. ..
...

w1Sc,nm(ξL, ξ1) · · · wLSc,nm(ξL, ξL)


+

{
0 for n = m

I for n �= m
(53)

where we used also another relation between the Rayleigh
coefficients:

a(±)(ξ, yp) = F (0; ξ,± (yp − yq)) a(±)(ξ, yq). (54)

for 0 < yp, yq < yc. From Eqs. (49) and (50), we finally obtain
the following relation:(

â(+)(yc + 0)
â(−)(−0)

)
= S̃

(
â(−)(yc + 0)

â(+)(−0)

)
(55)

where the scattering matrix of the entire structure is derived
as

S̃ =

(
Ŝ

−1

c,12 −F̂ Ŝp,11 Ŝ
−1

p,21

−F̂ Ŝc,22 Ŝ
−1

c,12 Ŝ
−1

p,21

)−1

·
 Ŝ

−1

c,12 Ŝc,11 F̂
(
Ŝp,12−Ŝp,11Ŝ

−1

p,21Ŝp,22

)
F̂

(
Ŝc,21−Ŝc,22Ŝ

−1

c,12Ŝc,11

)
Ŝ

−1

p,21 Ŝp,22

. (56)

3. NUMERICAL EXAMPLE

To validate the present formulation, we consider a specific
example excited by a line source situated parallel to thez-
axis at(x, y) = (xs, ys) for ys > yc + ac. The incident field
is expressed as

ψ(i)(x, y) = H
(1)
0 (ks ρ(x − xs, y − ys)). (57)

and the transformed incident field fory < ys can be expressed
by a superposition of the downward propagating plane waves
as:

ψ
(i)

(x; ξ, y) = f (−)(x; ξ, y − yc)t a(−)(ξ, yc + 0). (58)

The Rayleigh coefficients of the incoming plane waves are
given by(

a(−)(ξ, yc+0)
)

n
=

2
βn(ξ)d

e−i[αn(ξ) xs−βn(ξ)(ys−yc)] (59)(
a(+)(ξ,−0)

)
n

= 0 (60)

and the coefficients of the outgoing plane waves are then
calculated by using the scattering matrix given in Eq. (56).

Figure 2 shows the distribution of the total field intensity
outside the cylinders. The parameters are chosen as following
values: εs = ε0, εp = εc = 4 ε0, µs = µp = µc = µ0,
d = 0.8 λ0, and ap = ac = 0.4 d. The additional cylinder
is located at(xc, yc) = (0.5 d, d), and the line source is
located at(xs, ys) = (−0.5 d, 2 d). In the presented numerical
computation, each cylindrical wave expansion wave truncated
11 terms (from−5th- to 5th-order waves) and the scattered
fields are calculated as a sum of the outgoing cylindrical
waves from 21 cylinders (axes of the cylinders are situated
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(a) TM polarization
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(b) TE polarization

Fig. 2: Distribution of the total field intensity outside the cylinders for line source excitation.

at (x, y) = (0, 0), . . . , (±10 d, 0)) and an additional cylinder.
Also, the Gauss-Legendre scheme with the orderL = 100 is
applied to the numerical integration of the convolutions and
IPPFT. Figures 2(a) and 2(b) areEz andHz distributions for
TM and TE polarizations, respectively, and it is observed that
reliable results are obtained.

4. CONCLUSION

This paper formulates a novel approach to the two-dimensional
electromagnetic scattering of an infinitely periodic cylinder
array with an additional cylinder. The field components are
converted to pseudo-periodic functions by PPFT, and RTMA
is applied with the help of Yasumoto et al’s formula for the
lattice sums. The proposed formulation is applied to a specific
example and numerical experiments have provided reliable
results. In this paper, we calculated the fields outside the
cylinders but, of course, the fields inside them can be easily
obtained. Also, we have dealt with the scattering by dielectric
cylinders only. However, this approach is easily arranged to
the problems of perfectly conducting cylinders by replacing
the T-matrices of the unit cylinders given in Eqs. (23) and (24).
Anyway, the present formulation shows an ability of PPFT that
enables the mediation between the electromagnetic problems
on fully periodic and non-periodic structures.
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