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Abstract 

 
Most of the existing methods for the analysis of meanderline 
polarizer assume that the embedded metallic grids are 
infinitely thin. A new procedure is presented here for treating 
meanderline grids with finite thickness. The space between 
the metallic grids in a unit cell is considered as a 
meanderline waveguide with a stepped cross-section and 
length given by the grid thickness. The modes of this guide 
are obtained using the transverse resonance technique. A 
generalized scattering matrix characterization of the grid is 
obtained by field matching of the modes of the meanderline 
guide and the free space Floquet guide. The accuracy of this 
approach is verified by the very good agreement obtained 
between predicted and measured transmission phases of 
polarizer grids. 
 

1. INTRODUCTION 
 
The 90° meanderline polarizer is a very useful external means 
for converting an incident linear polarized plane wave into a 
circular polarized wave. The polarizing grid is doubly 
periodic and its configuration in a unit cell is shown in Fig. 1. 
In the following development, we will deal with a grid under 
normal incidence where the incident wave has its electric 
vector oriented in the 45° plane. This incident wave may be 
resolved into the two component TE00 and TM00 waves. For 
the former, the grid is normal to its electric vector and 
therefore appears to be capacitive. For the latter, the grid is 
parallel to the electric vector and hence is inductive to the 
incident wave. With the appropriate parameters and number 
of grid layers, a 90° phase differential can be created and 
approximately maintained between the TE00 and TM00 waves 
over a very broadband. 
 
All existing methods for the analysis and design of the 
meanderline polarizer may be classified into two groups. The 
first group [1] makes use of equivalent network models of the 
grids and dielectric layers as well as transmission line theory 
to predict the polarizer performance. A number of iterations 

consisting of model adjustments, fabrication and test are 
required to arrive at satisfactory design. The second group [2, 
3, 4] makes use of the Floquet Mode Expansion Moment 
Method to solve for the currents on the metallic grid, thereby 
giving the scattered fields. An integral equation of the grid 
currents is formulated by enforcing the continuity of the 
electric fields and discontinuity of the magnetic fields caused 
by the currents. In both groups, the metallic grid is assumed 
to be infinitely thin, which is essential for the second group. If 
the metallization is electrically thick, for instance, in a free-
standing grid or at the higher frequencies or from the use of 
heavy metal cladding, the electrical performance obtained 
will be in error. This is typically manifested as a frequency 
shift of the electrical response. Until now, the grid thickness 
cannot be used as a design parameter. To account for the 
thickness of the metal, we propose a new method which 
solves for the fields in between the grids, rather than for the 
grid currents. It also has the advantage of using much fewer 
Floquet modes in the field expansion. 
 
As shown in Fig. 1, the space in between two parallel grids in 
a unit cell is labelled here as a meanderline guide (MLG). 
Under normal incidence, the guide is symmetric about the 
centre wall (CW). The top (TW) and bottom (BW) walls of 
the guide are perfect electric conductors. Under normal TE 
incidence, the left (LW) and right (RW) walls as well as CW 
are perfect magnetic conductors (PMC). Under normal TM 
incidence, LW, RW and CW are perfect electric conductors 
(PEC). For the MLG with magnetic sidewalls, we need to find 
the TEM, TE and TM modes. For the MLG with electric 
sidewalls, TE and TM modes need to be determined. These 
modes are found using the Transverse Resonance Technique. 
Field matching between the MLG modes and the Floquet 
modes gives the Generalized Scattering Matrix (GSM) of the 
grid – free-space discontinuity. Combining these GSMs back-
to-back together with that of the intervening guide to account 
for the metal thickness, results in the GSM of a thick polarizer 
screen. 

2. MODES OF A MEANDERLINE GUIDE 
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Since the guide is symmetric about CW, we only need to 
develop the field representations in region I, II and III for 
each mode.  

A. TEM Mode 
The scalar potential satisfies Laplace equation and the 
pertinent field components are listed below. L, M and N terms 
are used to represent the field distributions in the three 
regions. 
 
Region I: 

L
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x 0 l

1 1 1
l 1,2,

L

I
y 0 l

1 1 1 1
l 1,2,
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x l
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Region III: 

N
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The unknown coefficients [A], [B], [D] and [F] are found by 
matching Ey and Hy at x = w1 and x = w1 + w2, the boundary 
between region I & II and region II & III. First solve for [A] 
using the following equation. 
 

T1I II II I II

11II III III III III

C Q R S A G

Q R S C G ( 4 )

A

 

 
Then obtain the rest from 

TII I
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B R S A ( 5 )
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The A, B, F and D coefficients of expansion need to be 
normalized by (N e) ½ so that power propagating through the 
MLG is unity. 
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B. TEz Modes 
 
The cross section of the MLG needs to be characterized by its 
S-matrix in the transverse X-direction so that the boundary 
condition at the sidewalls may be applied to achieve the 
transverse resonance condition. To this end, we first 
characterize the discontinuity between region I and II as 
shown in Fig. 2. 
 
Region I: 
The scalar potential for this region may be written as 

I I
xl xl z

L 1

jk x' jk x' jk z'I I I
l l

1
l 0 ,1,

l y'a e b e cos e
d

 

where al
I and bl

I represent the incident and reflected waves of 
region I. The origin of the (x', y', z') coordinate system is 
located at the (x=w1,y=0,z=0). The field components are as 
follows. 
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Region II: 
The scalar potential for this region may be written as 

II II
xm xm z
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2
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where am
II and bm

II represent the incident and reflected waves 
of region II. The Ey and Hz field components are 
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d
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Match Ey of region I and II at x' = 0, form the inner product of 
the resulting equation with cos (i y/d1) and integrate from 
y=h to y=h+d2. Similarly, match Hz of region I and II at x' = 
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0, form the inner product with cos [i (y-h)/d2) and integrate 
from y=h to y=h+d2. We end up with the following S-matrix 
description of the step-down junction. 

1T T
11

1T
12 11

T
21 11

T
22 12

S I P Q P Q I

S 2 I P Q P P S P

S Q I S

S U Q S ( 9 )

 

The matrices of the above equation are defined as follows. 
1I IIP K Q K  

2h d

l ,m
l 2 2 1h

l

Q L M matrix with elements

2 m lQ cos ( y h ) cos
d d d

2 , if l 0
1 , if l 0

y dy

l ,l xl 1

 

I I IK L L diagonal matrix with element K K d  
II II II

m,m xm 2K M M diagonal matrix with element K K d  

I L L unit matrix

U M M unit matrix
 

Elements of the Q, P and K matrices can be evaluated in 
closed form so that the S-matrix of the junction is readily 
obtained. The S-matrix of the junction between region II and 
III is similarly found by substituting in the appropriate 
parameters. The S-matrices of the two step junctions can now 
be combined together with those of the uniform guide 
sections of region I, II and III to give an overall S-matrix 
description, SM, of the symmetric half of the MLG. If 
boundary condition (BC) is imposed on the sidewalls LW and 
CW, we end up with the following characteristic matrix 
equation 
 

M L M L
11 12

M M C C
21 22

S D S a 0
(10 )

0S S D a
 

 
[DL] is a diagonal matrix with coefficient of +1 if LW is a 
PMC and -1 if LW is a PEC. Similarly for [DC] expressing 
the BC for CW. [aL] and [aC] are the incident waves at LW 
and CW respectively. For a non-trivial solution, the 
determinant of equation (10) vanishes at the mode cutoff 
wave numbers, kc. 
 
The bracketing and bisection method is used to find the roots, 
kc, of the matrix determinant. For a given root, the first 
unknown variable of the column matrix [aL] is set to 1. The 
first column of the characteristic equation can then be 
transferred over to the right hand side so that the equation 
may be written as [S'][a']=[b']. The remaining incident wave 
variables can now be determined through the least squares 

approach by multiplying both sides with the conjugate 
transpose of the LHS coefficient matrix [S']†[S'][a']= [S']†[b']. 
Once the incident and reflected wave variables are determined 
in all regions of the MLG cross-section, they are normalized 
by the square root of the mode power transmitted by the 
MLG.  

C. TMz Modes 
 
Region I: 
The scalar potential for this region may be written as 

I I
xel xel ze

L

jk x' jk x' jk z'I I I
e el el

1
l 1,2,

l y'a e b e sin e
d

 

where ael
I and bel

I represent the incident and reflected waves 
of region I. The origin of the (x', y’, z’) coordinate system is 
located at the (x=w1, y=0, z=0).  
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L
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x el el xel

1
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d d
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2
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l y'H a e b e jk sin e
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Region II: 
The scalar potential for this region may be written as 

II II
xem xem ze

M

jk x' jk x' jk z'II II II
e em em

2
m 1,2,

ma e b e sin ( y' h ) e
d

 

where aem
II and bem

II represent the incident and reflected 
waves of region II. The field components are 
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xem xem
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e
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II II
xem xem
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M jk x' jk x'II II
em em

2 2x
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m m ( y' h )a e b e cos
d dH
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Match Ez of region I and II at x' = 0, form the inner product of 
the resulting equation with sin (i y/d1) and integrate from y=h 
to y=h+d2. Similarly, match Hy of region I and II at x' = 0, 
form the inner product with sin [i (y  h)/d2)] and integrate 
from y=h to y=h+d2. We end up with the following S-matrix 
description of the step-down junction. 

1
11

12 11

21 11

22 21

S I q p q p I

S q S q

S p I S

S U S q ( 13 )

 

 
The matrices of the above equation are defined as follows. 

1 TII I
e ep K q K  

2h d

l ,m
1 2h

q L M matrix with elements

2 m lq sin ( y h ) cos
d d d1

y dy

I
xel 1

 

I
eK L L diagonal matrix with element K d / 2  
II II
e xem 2K M M diagonal matrix with element K d / 2  

I L L unit matrix

U M M unit matrix
 

The mode characteristic matrix equation can now be set-up as 
for the TEz case. The mode cutoff wave numbers and wave 
variables in the various regions are determined accordingly. 
 

3. MEANDERLINE GUIDE – FREE SPACE JUNCTION 
 
The S-matrix of the MLG – free space junction is given by 
eqn. (9) where the elements of the P and Q matrices are 
defined as follows. 
 

( mlg)
m ( mlg) ( fs )

l ,m m l( fs )
l

mlg

ˆP e h z dS   

( mlg)
m ( mlg)* ( fs )

l ,m m l( fs )
l

mlg

ˆQ e h z dS (14 )  

The Floquet mode index is l and MLG mode index is m. The 
mode impedance is given by . These integrations of the 

MLG electric field mode vectors, ( m lg)
me , and the Floquet 

magnetic field mode vectors, ( fs )
lh , can be done in closed 

form, leading to an efficient generation of the S-matrix. 
 

4. RESULTS 
 
The theoretical procedure presented here was verified by 
predicting the transmission phases of meanderline grids 
printed on a dielectric substrate as shown in Fig. 3. Effects of 
the dielectric support are included here by combining the 
GSM of the slab to that of the grid. The parameters and test 
results for two such grids were published by Terret et al [2]. 
However, no grid thickness was given, so 1-oz copper 
metallization is assumed for the computations carried out 
here. The transmission phases and the differential phase shift 
of the TE00 and TM00 modes for the two grids are plotted in 
Fig. 4 and 5. Details of the grids are given in the respective 
plots. The differences between the two grids are the width w 
and height h of the lines. For the field approximation, the 
minimum highest cutoff wave number required for the MLG 
modes to achieve convergence is approximately 90. This 
yields 44 modes for the Grid ‘A’ MLG with PMC sidewalls 
and 40 modes with PEC sidewalls. To generate these modes, 
the number of functions used in region I, II and III is L=13, 
M=9 and N=13 respectively. The highest cutoff wave number 
of the Floquet modes needed for convergence must be at least 
15% larger so that 138 free space modes are used. The 
number of Floquet modes is significantly less, approximately 
3 times less than that required for the grid current approach. 
Grid ‘B’ MLG has 44 modes with PMC sidewalls and 38 
modes with PEC sidewalls. The number of expansion 
functions in the 3 regions is 13, 8 and 13. Both the 
transmission phases and differential phase shift show very 
good agreement with measurements for both grids across the 
frequency band. Only the measured differential phase shift is 
plotted here for comparison. In conclusion, a method has been 
developed that can analyse accurately meanderline grid with 
finite thickness. 
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Fig. 1: Unit Cell of a Meanderline Polarizer. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2: Step Junctions of Symmetric Half of MLG 
 
 
 
 
 
 
 
Fig. 3: Printed Meanderline Grid on a Dielectric Sheet 
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Fig. 4: Transmission Phases and Differential Phase Shift of TE00 and TM00   

Modes for Grid A. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5: Transmission Phases and Differential Phase Shift of TE00 and TM00   

Modes for Grid B. 
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