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In 1968 Veselago wrote his now famous paper where he posed 
the question:  What would happen if a material had both 
negative permittivity and permeability [1].  He concluded that 
E , H  and the propagation constant  would form a left 
handed system instead of the conventional right handed system.  
Perhaps the most striking conclusion was that the index of 
refraction, i.e., the propagation constant as well, would be 
negative.  Veselago was quick to point out that such materials 
have not been found in nature; in fact, he prudently added that 
there were perhaps profound reasons for their absence. 

ŝ

 
Beginning in the 1990’s, Pendry et al in a series of papers 
suggested that negative  and later negative  could be 
produced artificially by use of special elements in a periodic 
structure [2].  This was followed by numerous papers that 
claimed to have experimentally observed or theoretically 
produced negative indices of refraction with periodic structures 
[3-11, to mention just a few]. 
 
Most of these papers were either experimental or based on 
numerical solutions that revealed very little about what actually 
went on inside the metamaterials rather than just the scattered 
field outside.  A notable exception was a paper by Steve 
Cummer [12].  It actually measures the field inside the DNM 
media (wires and SRR as usual) but placed inside a waveguide.  
However, this “slab” of DNM has a one way attenuation of 10 
dB, i.e. it takes us way inside the rim of the Smith chart (VSWR 
~2:1).  A typical input impedance of such a “slab” may look 
like that illustrated in Figure 1a, if the Smith chart is normalized 
to the intrinsic impedance Z1 of the slab.  Alternatively we can 
normalize such that the locus circle is entirely to the left of Z0 as 
shown in Figure 1b.  If we now observe the input impedance on 
the locus circle as a function of frequency from the center of the 
Smith chart, it will look like the impedance on the left side of 
the locus circle moves clockwise, while the impedance on the 
right side moves counter clockwise (“wrong” way).  The last 
case is often perceived as an indication of a negative 

propagation constant.  This is, of course, not the case as clearly 
illustrated for the same material in Figure 1a.  Similarly, Figure 
1c shows the case when the locus circle is located to the right of 
Z0.  More details will be given in a future paper [13].  Note that 
if the “slab” is lossless, the locus circle would be located on the 
rim of the Smith chart and no ambiguity would exist.  In other 
words, Cummers’ paper does not conclusively show negative 
propagation constant (or negative indices of refraction). 
 
A thorough review of the literature encompassing periodic 
structures or frequency selective surfaces from 1960’s to the 
present would quickly verify that periodic structures of this type 
have been studied rather extensively for several decades, which 
has resulted in a very rigorous theory that has been extensively 
tested and experimentally verified [14, 15 to mention a few]. 
 
More specifically, the precise expression for the H-field for an 
infinite array of infinitesimal elements, , with current I, is 

given by [16]: 
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where Dx and Dz are the interelement spacings of the array, r̂  
are the directions of the plane wave spectrum and 
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Similarly, the E-field is given by [16]: 
 

0,ˆˆˆ
2

ˆ

yrrp
r

e
DD

ZIdlEd
k n y

rRj

zx
    (2) 

 
Inspection of (1) and (2) shows that the H-fields are oriented 
along rp ˆˆ  and the E-fields along rrp ˆˆˆ , i.e., all plane 
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waves given by (1) and (2) are right handed.  The simplicity of 
(1) and (2) might suggest that the currents have been 
approximated in the derivation, like for example, neglecting the 
interaction between elements.  In fact, the Method of Moment 
Theory developed in [15] contains all mutual couplings 
between all elements regardless of shape and location.  As an 
example see Figures 3.4, 3.6 and 3.7 in [15].  Equations (1) and 
(2) contain all the evanescent and propagating waves.  In other 
words, they are valid all the way up to the surface of the 
elements, i.e., they represent the fields everywhere inside and 
outside of the meta-material, regardless of its complexity.  Note 
further that magnetic dipoles are merely loops with electric 
currents, i.e. they are automatically incorporated in (1) and (2).  

In case we use slots instead of dipoles, we will, of course, use 
“magnetic” currents.  However, this does not change our 
fundamental argument.  
Let us finally consider an infinite array of a finite number of 
segments  with the reference vectors p21 p,,p,p ˆˆˆ

p21 R,,R,R  and current moments , 

respectively.  We note that the plane wave directions 

pp2211 dlI,,dlI,dlI

r̂  
(spectrum) are the same and identically equal to r̂  since all the 
array of segments  have the same inter-element spacings Dpp̂ x 

and Dz.  Thus, the total field H-field from an infinite array of 
arbitrary elements is according to (1) given by  
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We have denoted the square bracket by the “composite vector”.  
It is seen to consist of a sum of unit vectors  multiplied with 

the scalars I

pp̂

pdlp and the individual phase advances rRj pe ˆ . 
At this time we shall leave the physical interpretation open, 

however interesting it might be.  What matters is that we by 
application of (2) can obtain the total E-field for an infinite 
array of arbitrary elements: 
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From (3) and (4), we conclude that the total E - and H-fields 
from an infinite array of arbitrary elements can produce only 
right handed waves regardless of the interelement spacings Dx 
and Dz. 
 
We finally emphasize that the location pR  of the individual 

segments  is completely arbitrary.  Thus, some of the 

elements can readily be located in other arrays parallel with the 
original one (not tilted since it would lead to violation of 
Floquet’s Theorem). 

pp̂

 
Thus, we have actually proven that a multilayered periodic 
structure can never produce a left handed field.  Note further, 
that the evanescent waves are attenuated (as their name 
indicates) not amplified as they go through the periodic 
structure.  More specifically, EM-waves originate on electric 
and/or magnetic conductors.  They do not suddenly start 
behaving “strange” between the elements.  For more detail, 
study the theory of periodic structures in [15].  This does not 

contradict Veselago [1] who made no claims about the 
existence of materials with negative  and . 
 
Note:    It should finally be pointed out that some earlier papers 
are also skeptical regarding the existence of negative indices of 
refraction from periodic structures [18, 19, 20].   
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Figure 1.  A typical input impedance as a function of frequency of a lossy slab with intrinsic impedance Z1 terminated in free 
space.  a) Z1 normalized to the center Z0 of the Smith chart.  b) Normalized such that the locus circle is to the left of Z0.  c) 

Normalized such that the locus circle is to the right of Z0.  Seen from the center Z0, it looks like the impedance moves the “wrong 
way” in the right half of the locus circle in case b, and on the left half in case c.  If there is no loss in the slab, the input impedance 

will be on the rim of the Smith chart and no ambiguity exists. 
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