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1. Introduction 

It is important for radar cross section reduction and target identification to investigate 
electromagnetic scattering from various objects [1]. Our mode matching technique can analyze 
electromagnetic scattering problems with a high degree of accuracy [2]. In recent years, we 
have proposed an error prediction of our technique for two dimensional problems [3,4].   

In this paper, we extend the idea to three dimensional problems and investigate 
computational accuracy of our technique. Compared with the reference solution, our prediction 
method for three dimensional problems is verified. Furthermore, we clarify the computational 
error due to the placement of sampling points.  
  
2. Formulation 

To investigate computational accuracy of our mode matching technique, 
electromagnetic scattering from a simple geometry, dielectric sphere, is studied. The incident 
wave is a plane wave propagating toward z+  direction as shown in Figure 1. In the spherical 
coordinate systems, the θ and φ  components of the incident electric field can be written as 
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where ( ))1(/)12( ++= − nnnja n
n , ( )rkJrkrkJ nn 02/100 2)(ˆ

+⋅= π , )(nJ  is the n-th order of the 
Bessel function, )(1

nP  is the n-th order of the Legendre function, N is the truncation mode 
number, and 0k  is the wave number in vacuum. The time dependence is tje ω

 and suppressed 
throughout the paper.  

In our method, we need to divide the whole physical space into some regions for 
which model expansion can be easily performed [2]. For this simple geometry, we divide the 
whole space into two regions, which are outside and inside the sphere. The electromagnetic 
fields in these regions are expressed as follows:  
Region 0S  : Outside the sphere 

The scattered field can be represented by using the Hankel function which satisfies the 
radiation condition. Using a finite sum of modes, it can be approximated as  
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where ( )rkHrkrkH nn 0
)2(

2/100
)2( 2)(ˆ

+⋅= π , )()2(
nH  is the n-th order of the second kind of the 

Hankel function. 
Region 1S  : Inside the sphere 

The electromagnetic field in this region can be represented by using the Bessel 
function, such as 
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where 1k  is the wave number in the homogeneous dielectric sphere.  
The unknown coefficients nb , nc , nd , and ne are determined to satisfy the continuity 

condition at the sampling points on the surface of the sphere. The placement of sampling points 
will be discussed in Sec.3. 
2.1 Error Prediction 

To predict the computational accuracy of our method, we investigate the convergence 
rate of the Bessel function for varying the truncation mode number. The rate can be evaluated in 
terms of the excess bandwidth formula [5, 6]. Recently, we have proposed the error prediction 
which is given by [2, 3]  

0-210 d
PC =   

 
 

 
where akN 1> . 

We can obtain the modified expression for the error prediction of the RCS as  
 
 

   
  

                    
               
 

 
 
   

 
where akn 1> , maxN  is the largest truncation mode number N for the reference solution. 

2/3

3/1
1

1
0

)(8.1 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −=

ak
akNd

,

∑
=

−=
N

n

dS
1

2 010
, 

( ) 2SNDI =
, 

( ) ( )
( )max

max
ND

NDND
C

I

II
I

−
=

, 

2/3

3/1
1

1
0

)(8.1 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −=

ak
akNd

,

(3) 

(4) 

(5) 

(6) 

, 

, 

, 

, 

(7) 

(8) 

, 

(9)

(10) 

(12)

(11) 

923



 

 
3. Computational Results 

We investigate the computational accuracy due to the placement of sampling points as 
shown in Figure 2. The selection of intervals of the sampling points nθΔ  and nφΔ  are as 
follows: 
 
 
 
 
 
 
 
 
 
 
where 1=n  to N and )(rand  is a random number from 0 to 1. 

Figure 3 plots the relative error of the RCS for changing the placement of sampling 
points. The normalized frequency is π121 =ak  and the observation point is at 0=θ  and 

0=φ . Compared with the case 1, we can obtain higher accuracy for the cases 2, 3, and 4 in 
which sampling points are placed at the same θ interval. Hereafter, we perform numerical 
analysis using the sampling points at the same interval in θ direction. 

Figure 4 shows the relative error of the RCS obtained by our method. Dots indicate the 
error for a dielectric sphere with π61 =ak  and triangles indicate the error for a dielectric 
sphere with π121 =ak . The solid line indicates the modified error prediction given by Eq. (9). 
The numerical results and the error prediction are in good agreement. 

     
Figure 1: Geometry of the scatterer. 

x

y

z

+H
+E

φ

θ0S

1S

,

,

,

,

   nθΔ  : )(180 nrandn ×  
   nφΔ :  0 

(a) Case 1: 

   nθΔ  : ( )1180 +Nn  
   nφΔ :  0 

(b) Case 2: 

   nθΔ  : ( )1180 +Nn  
   nφΔ : ( )1360 +Nn  

(c) Case 3: 

   nθΔ  : ( )1180 +Nn  
   nφΔ : )(360 nrandn ×  

(d) Case 4: 
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 (a) case 1          (b) case 2           (c) case 3          (d) case 4 

 
                      Figure 2: Placement of sampling points. 
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4. Conclusions 

We study electromagnetic scattering from a dielectric sphere by using a mode 
matching technique. A novel error prediction method is proposed and verified. We also clarify 
the computational accuracy due to the placement of sampling points. 
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Figure 3: Relative error for various placements  

of sampling points. 
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Figure 4: Error prediction for varying the 

truncation mode number N. 
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