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1. Introduction 
 
 In this study, we demonstrate an acceleration of flexible generalized minimal residual 
algorithm (FGMRES)[1] implemented with the method of moments and the fast multipole method 
(FMM), based on a combined tangential formulation. For the implementation of the FGMRES 
incorporated with the FMM concept, we propose a new definition of the truncation number for the 
FMM operator within the inner solver. The proposed truncation number provides an optimal 
variable preconditioner by controlling the accuracy and computational cost of the inner iteration. 
 
2. FGMRES Implemented with the FMM 
 
 The conceptual diagram of the inner-outer FGMRES methods implemented with the FMM 
techniques is shown in Figure 1. We define the truncation number i

lmL ,  for the l-th MLFMA level 
and medium m as follows: 
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where, p  denotes the rate of increase of the truncation number corresponding to the MLFMA level 
and a smaller l indicates a finer (lower) MLFMA level. In Eq. (1), ⎣ ⎦⋅  stands for the floor operation, 

la  indicates the cluster size of the l-th MLFMA level,  the parameters 1r  and 2r  are real numbers 
in the range [0, 1], and o

lmL ,  represents the truncation number of the l-th MLFMA level and medium 
m for the outer solver. 2r  represents the ratio of the truncation number of the inner solver to that of 
the outer solver. Hence, 2r  ensures that i

lmL ,  is less than o
lmL ,  multiplied by 2r , regardless of the 

settings for 1r  and p . Using 2r  and the )min(⋅  operation, we can always keep the FMM operator 
for the inner solver less accurate and cheaper than that for the outer solver. Throughout this study, 

2r  is fixed to 0.9.  
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Figure 1: A conceptual diagram of the inner-outer methods. 
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3. Numerical Experience 
 
 In this section, we present numerical results to verify the accuracy and efficiency of the 
proposed implementation, and we conduct comparative experiments in respect of the strategies for 
the variable preconditioner. In the numerical experiments, we use FGMRES(m) for the outer and 
inner solvers and GMRES(m) for the innermost solver, with m representing the restart cycle. 
 The settings for the iterative solvers are summarized in Table 1. We investigate a total of 6 
cases. All six cases are based on the proposed method and a policy of decreasing FMM accuracy 
down to the innermost solver. The far-field interaction is included with the truncation number 
determined by Eq. (8) for the 1st-level preconditioner, whereas no far-field interaction is considered 
for the 2nd-level one. The memory usage for FGMRES is twice that for standard GMRES for the 
same restart cycle, because FGMRES also stores the preconditioned Krylov basis vectors as well as 
the original Krylov basis. We therefore set the restart cycles for FGMRES and GMRES in such a 
way that all the cases have similar memory requirements.  
 In all the solvers for both the outer and inner iterations, the iteration process begins with the 
initial guess solution x0 = 0. The runs were carried out in double precision on the 16 AMD Opteron 
processors of an SGI Asterism server with 256 GB memory using OpenMP parallelization.
 We consider a practical problem of a horn antenna radiating in the presence of a radome 
equipped with a frequency selective surface (FSS). Fiture 2 (a) displays the geometry of the antenna 
and the radome. The antenna is assumed to be a standard gain horn, which is modeled by specifying 
the aperture distribution of the electric and magnetic fields, with the dimensions of the aperture 
being 194 mm (x-axis) × 144 mm (y-axis). An FSS-embedded radome, having the shape of a partial 
sphere with a radius at the radome base of 12 λ , is placed in front of the antenna aperture. The 
radome wall profile and the unit cell of the FSS layer are depicted in Figure 2(b) and (c). The 
dielectric layers are assumed to have the so-called “A-sandwich” structure, with two skin layers (εr 
= 4.277 and tanδ = 1.695E-2) separated by a core layer (εr = 1.167 and tanδ = 0.814E-2). As shown 
in Figure 2 (c), an FSS layer, which consists of a square-grid arrangement of ring-shaped slots on a 
conducting surface, is embedded in each of the two skin layers. We note that the configuration of 
this FSS radome is initially designed in a 2D planar model by evaluating the transmission and 
reflection properties, and the periodic arrangements of the unit cells are then mapped onto the 
spherical surfaces using a mapping scheme based on the geodesic. This geometry is discretized into 
444,064 triangles, and the resultant linear system has 1,013,744 degrees of freedom. We use a 
denser mesh in this problem to capture the details of the equivalent currents, especially on the FSS 
layers. This test problem yields five levels for the MLFMA operator in the outer solver, with the 
truncation numbers being {9, 13, 20, 33, 58} for the free space of m = 1, {13, 20, 34, 60, 109} for 
the skin layer of m = 2, and {9, 13, 21, 35, 62} for the core layer of m = 3.  
 Table 3 tabulates the number of iterations, the CPU time required for convergence, and the 
memory usage for the CNs given in Table 1. CN 2 performs the best in terms of CPU time with 
some increase in the memory usage compared to the non-preconditioned case (CN 8). However, the 
impact of the memory increase is not significant considering the remarkable improvement in the 
convergence achieved by CN 2. We infer that we can effectively balance the CPU times consumed 
in the outer solver and the preconditioners by using a variable preconditioner with a moderately 
accurate FMM operator provided by Eq. (8) and a multistage preconditioner. Consequently, CN 2 is 
the preferred implementation from the viewpoint of both CPU time and memory requirements. The 
observations indicate that an FGMRES implementation, with a moderately accurate FMM operator 
in the inner solver and a multistage preconditioner with decreasing FMM accuracy down to the 
innermost solver, is the most prospective strategy for a problem with several levels of complexity. 
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Table 1: Settings for iterative solvers; CN ≡ case number, pre. ≡ preconditioner, sol. ≡ solver, 
itr. ≡ iteration, tol. ≡ tolerance. 

CN  Max itr. Tol. Restart cycle r1 p 
1 Outermost sol. 500 1.E-4 25 - - 
 1st-level pre. 20 0.3 20 0.5 0.2 
 2nd-level pre. 10 0.1 10 0.0 0.0 

2 Outermost sol. 500 1.E-4 25 - - 
 1st-level pre. 20 0.3 20 0.5 0.75 
 2nd-level pre. 10 0.1 10 0.0 0.0 

3 Outermost sol. 500 1.E-4 25 - - 
 1st-level pre. 20 0.3 20 0.5 0.95 
 2nd-level pre. 10 0.1 10 0.0 0.0 

4 Outermost sol. 500 1.E-4 25 - - 
 1st-level pre. 20 0.3 20 1.0 0.3 
 2nd-level pre. 10 0.1 10 0.0 0.0 

5 Outermost sol. 500 1.E-4 25 - - 
 1st-level pre. 20 0.3 20 1.0 0.55 
 2nd-level pre. 10 0.1 10 0.0 0.0 

6 Outermost sol. 500 1.E-4 25 - - 
 1st-level pre. 20 0.3 20 1.0 0.75 
 2nd-level pre. 10 0.1 10 0.0 0.0 

7 Outer solver 500 1.E-4 40 - - 
 Inner solver 20 0.3 20 0.0 0.0 

8 Outer solver 5000 1.E-4 100 - - 
 Inner solver - - - - - 

 

     
     (a) Geometry of the antenna and the radome           (b) FSS Radome wall profile         (c) Unit cell of the FSS layer 

Figure 2: Geometry of simulation model. 

 

 
 

Figure: 3 A photograph of the fabricated FSS-embedded radome that was used for the measurement. 

916



Table 2: Comparison of the number of iterations, CPU time, and memory usage. 
CN 

i
lmL ,  for the 1st-level 
preconditioner Number of iterations CPU time [s] Memory usage [GB] 

1 
m =1: 4,4,5,6,6 
m =2: 6,6,7,9,10 
m =3: 4,4,5,6,6 

29 306293.2 32.41 

2 
m =1: 4,6,11,19,32 
m =2: 6,10,16,28,48 
m =3: 4,6,11,19,32 

12 167424.0 32.47 

3 
m =1: 4,7,14,28,55 
m =2: 6,11,22,43,83 
m =3: 4,7,14,28,55 

12 194176.8 32.52 

4 
m =1: 9,10,11,13,15 
m =2: 13,14,17,19,22 
m =3: 9,10,11,13,15 

13 197612.1 32.03 

5 
m =1: 9,13,19,28,41 
m =2: 13,19,27,40,59 
m =3: 9,13,19,28,41 

11 179702.4 32.10 

6 
m =1: 9,11,18,29,52 
m =2: 13,18,30,54,104 
m =3: 9,11,18,31,55 

11 170432.5 32.16 

7 m =1, 2, 3: 0,0,0,0,0,0 148 309048.3 31.80
8 - 2163 534216.3 31.73

 
4. Conclusions 
 
 In this paper, we have proposed a method to accelerate the FGMRES based on the MoM 
and FMM techniques. We have reconsidered the definition of the truncation number in the inner 
solver and extended it to an implementation based on the CTF for electromagnetic scattering and 
radiation problems with composite dielectric and conducting objects. The numerical experiments 
revealed that, similar to the VSIE formulation given in Ref. [2], a moderately accurate FMM 
operator provides the optimal preconditioner. Furthermore, we investigated the effectiveness of a 
multistage preconditioner by applying the inner-outer concept recursively. We observed that our 
new FGMRES implementation strikes a balance between the CPU time and the memory 
requirements. As a consequence, it is a promising strategy for solving large-scale and practical 
scattering and radiation problems. 
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