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1.  Introduction

     Inter-symbol interference (ISI) and cochannel interference (CCI) are two main problems which limit the
communication quality and capacity in mobile communication systems. The adaptive antenna under space-
time adaptive processing (STAP) is considered as an efficient way in solving those problems. However, due
to the large scale of adaptive weights and the high correlation in space and time, such an adaptive antenna
suffers from the large computation burden and the slow convergence performance.
     To ease these problems of STAP, the authors have proposed the subband adaptive array scheme [1, 2],
which, in essence, is an equivalent space-frequency domain approach to STAP. In this paper, we propose a
novel approach of the spatio-temporal signal subspace-based subband space-time adaptive processing
(SSTAP) scheme. Compared with the conventional STAP, the proposed method greatly improves the
convergence performance, while the performance of the residual error power remains unchanged.

2. Signal Model

    Consider a base station using an antenna array of N ( )1≥N  elements. Signals from P ( )1≥P  users are

illuminating the array. The signal of the desired user is denoted as )(1 ts , whereas the signals from other

users are denoted as Ppts p ,,2),( �= . The received signal vector at the array is expressed as
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where sp(m) and hp(t) are the information symbol sequence and the channel vector of the p-th user, T
denotes the symbol duration, and )(tn  is the array noise vector. In the following, we use (⋅)*, (⋅)T and (⋅)H to
express complex conjugate, transpose and conjugate transpose, respectively.
    To simplify the subsequent analysis, we make the following assumptions.

A1) The user signals are wide-sense cyclostationary when they are sampled at fractionally spaced
symbol cycle, and are wide-sense stationary when they are sampled at the symbol rate.

A2) The information symbols Ppmsp ,,1 ),( �=  are i.i.d. (independent and identically distributed)

with 1}|)({| 2 =msE p , and are uncorrelated with the channel noise vector.

A3) All channels { }Pptp ,,1),( �=h  are linear and time-invariant, and each of them is of a finite

duration within ],0[ TD p , where pD  is called the channel order of the p-th user.

A4) The noise vector is zero-mean, temporally and spatially white with circular Gaussian property.
    Denote ∆ as the sampling cycle, and let J =T/∆ (J≥1). Further, we denote

TTTT JnTnTnTn )])1((,),(),([)( ∆−−∆−= xxxx � , then

)()()()(
1 0

nddnsn p

P

p

D

d
p

p

nhx +−= ∑ ∑
= =

                                                  (2)

where TTT JnTnTn )])1((,),([)( ∆−−= hhh �  and TTT JnTnTn )])1((,),([)( ∆−−= nnn � . For M
consecutive symbol periods, we denote
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as the input vector of the entire STAP system, where T
ppppp DMnsnsnsnS )]1(,),1(),([)( +−−−= � ,

TTTT MnnnnN )]1(,),1(),([)( +−−= nnn � , and
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Let W be the weight vector to X(n), the output of space-time adaptive processing is given by

)()( nXWny T=                                                                  (4)
Under the minimum mean square error (MMSE) criterion, the optimum weights of the STAP are given by
the well-known Wiener-Hopf solution

)( 1* vW XMMSE rR −=                                                                 (5)

where )]()([ nXnXE H
X =R , )]()([ )( 1 nXvnsEv −= ∗r , and 0≥v  is a proper delay of the training signal,

which is assumed to be an ideal replica of the desired signal )(1 ns .

3. Subspace Decomposition
    Under the assumptions A1) – A4), the correlation matrix of the signal vector can be rewritten as

[ ] N
H

S
H

X nXnXE RHHRR +==  )()(                                              (6)

where ][ 21 PHHHH �= , 
DMpS PpDiag IRR === },,1,{ � , 

pDM
H
ppp nSnSE +== IR )]()([ ,

MNJ
H

N nNnNE IR 2)]()([ σ== , ∑
=

+=
P

p
pD DMM

1

)( , and IM is the M×M identity matrix. Performing

eigen-decomposition to RX yields
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where 2
121 nMNJMM DD

σλλλλλ ===≥≥≥≥ + ��  are the eigenvalues of XR , and

},,1,{ Dis Midiag �==Σ λ , },,1,{ MNJMidiag Din �+==Σ λ . The columns of ],,[ 1 DMSSS �=  span

the spatio-temporal signal subspace, whereas the columns of ],,[ 1 DMMNJ −= GGG �  span the spatio-

temporal noise subspace.

4. Spatio-temporal Signal Subspace-based Subband Processing Schemes

    According to A2, it is seen that r(v) is the (v+1)-th column of 1H , which means r(v) belongs to the

signal subspace spanned by the columns of S or H. Using the orthogonality property between the signal
subspace and its noise subspace, the residual error power of (4) under (5) can be denoted as
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which tells the fact that for STAP, using the projection of the received signal vector on the spatio-temporal
signal subspace instead of the received signal vector itself does not reduce the output performance of the
residual error power. For fair comparison, under the polyphase representation [4,5] we define the relation
between the conventional STAP filter and the signal subspace-based STAP filter by
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ML ≤≤1 . It will be seen that (9) yields the signal subspace-based subband approach.

    To obtain the subband realization, we partition S into M×Mt submatrices as following,
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where tij MjMi ,,1,,,1, �� ==S , are the submatrices of S, each submatrix dimension is NJNJ ×  and

Mt (=MD/NJ) is the dimension of the signal subspace. In practice, the dimension can be estimated by using
the information criteria such as the Akaike Information Criterion (AIC).
    By using the polyphase representation [4, 5], the z-transform of the output of the signal subspace-based
system can be expressed as

∑∑∑
== =

−− ==
tt M

j

T
j

LT
j

M

j

M

i

H
ij

LT
j

i zzzzzzzY
11 1

)1( )()()()()()( xGFxSF                               (11)

where Y(z) is the z-transform of y(n), )(zx  express the z-transform of )(nx , and
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in which two-tap filters are used for the new subband filters Fj(z). We call )(zjG  as the space-time subband

filter. Under the subband STAP, it is seen from the aforementioned definition ofW(z) under the line of (9)
that the equivalent number to the delay line taps of the conventional STAP filter is tML +×− )12( . Using
vector notations, (11) can be expressed in the time domain as
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],,[ 1 fff �= and TT
M

T
t
],,[ 1 xxx �= , and )(njx  is the output of subband filter )(zjG .

5. Convergence Rate Analysis

    Using the LMS algorithm, the weights of STAP in (5) is updated according to

)()()()1( nXneWW kk ∗+ += µ (14)

where µ is the step size, and )()()( 1 nyvnsne −−= is the error signal. For the proposed subband STAP,
due to the decorrelation by the subband filtering, each weight can be updated under the LMS algorithm
with the different step size,

1 ,0  ),()(1)()1( =−ΦΣ+= ∗−+ llLnnes
k

l
k

l xff µ .          (15)

In the case of uncorrelated signals, the diagonal elements of sΣ  represent the power of the uncorrelated

subband channel signals. Let TTT ],[ 10 fff =α  and TTT Lnnn )](),([)( −= xxxα , (15) can be written as
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where 1
2

−Σ⊗=Λ sI , and ⊗ expresses the Kronecker product. From the general convergence analysis of the
LMS algorithm, the convergence rate of the LMS algorithm based on (16) mainly depends on the

eigenvalue spread of the weighted correlation matrix [ ])()( nnE H
ααα xxR Λ= . To compare Rα with RX , it

is seen that the eigenvalue spread of Rα is much smaller than that of RX. So the convergence rate of (16) is
highly improved. It is noted that the existence of { }NJLNJMLM tD −− ,min  zero eigenvalues of αR
does not influence the convergence rate of the LMS algorithm [5]. The presence of zero eigenvalues brings
an infinite number of optimum solutions in terms of the Wiener-Hopf solution (5) with the same residual
power.

6. Simulation Results

    In the simulation, a uniform circular array with three identical point elements is employed. The inter-

element spacing is λ3  (λ is the RF wavelength). Three users are present, where one is the desired user



and the others are interference users. All of the user signals are modulated by QPSK with an FIR of roll-off
factor 1.0. Each user has six rays arriving at the array with different elevation θ and azimuth ϕ. The
parameters for those three users are listed in Table I, where τ and ξ denote the time delay and propagation
loss, respectively. The input SNR of the first ray of each user is 10 dB.
    The LMS algorithm is employed and the step size for both STAP and SSTAP algorithms is selected as
µ=0.4/(total input power). The total power for the STAP and SSTAP equals to the trace of XR  and the

trace of αR , respectively. We assume J=2 and M=20. Further, in each subband, two taps (K=2) are taken,

and L is selected to meet tMLM +×−= )12( .
    Fig. 1 shows the residual error power versus the number of iteration. To evaluate the effect of the
estimated spatio-temporal signal subspace on the output performance of SSTAP, Nt = 220, 520, and 1020
samples are used for the signal subspace estimation, and the performance is shown as SSTAP1, SSTAP2,
and SSTAP3, respectively. From this figure, two observations are in order. (1) All the three types of SSTAP
provide high convergence rate than that of the conventional STAP. (2) The larger number of samples is
used for the estimation of the signal subspace, the higher the convergence rate.
    To show the reduction of the eigenspread by SSTAP, we plotted in Fig. 2 the eigenvalues of the
associated correlation matrix. This figure clearly shows the significant reduction of the eigenvalue spread
by using the spatio-temporal signal subspace-based subband approach.

7. Conclusion

    We have proposed the spatio-temporal signal subspace-based subband approach to the conventional
STAP. Theoretical analysis and computer simulations have shown that the proposed approach greatly
improves the convergence rate whereas the steady-state performance remains unchanged.
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No. θ (deg.) ϕ (deg.) τ (sym.) ξ
1 -12.3 24.6 0 1.0
2 -28.0 30.7 0.99 0.02-0.84i
3 -13.1 46.7 1.16 0.09+0.80i
4 -0.80 13.0 3.89 -0.75-0.26i
5 -24.0 48.8 5.69 -0.54-0.44i
6 -26.0 25.9 7.41 -0.52-0.29i

 Table I (a) desired signal

No. θ (deg.) ϕ (deg.) τ (sym.) ξ
1 -8.6 33.6 0 1.0
2 -21.7 46.8 0.65 0.78+0.06i
3 -21.2 77.1 1.09 0.65-0.33i
4 -27.2 67.0 6.43 -0.58-0.17i
5 -10.9 76.8 6.69 0.06+0.54i
6 -26.0 59.0 9.46 -0.39-0.34i

Table I(b)  Interference signal 1

No. θ (deg.) ϕ (deg.) τ (sym.) ξ
1 -6.6 120.6 0 1.0
2 -3.3 147.3 1.29 0.04+0.86i
3 -8.7 125.2 1.74 0.26+0.79i
4 -9.4 151.9 5.73 0.70+0.29i
5 -14.0 124.8 6.47 0.49+0.06i
6 -0.30 159.3 8.15 -0.37-0.25i

Table I(c)   Interference signal 2
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(b) SSTAP
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