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1. Introduction
Modern wireless communications systems require improvement in capacity and data transmission

speed. Adaptive array antennas separate spatially a desired wave from interference waves by control-
ling their radiation or beam pattern directivity. A digital beamforming (DBF) array performs adaptive
beamforming by digital signal processing. However, the circuit scale, number of RF channels and power
consumption increase with the number of array elements.

In this paper, we propose a system of adaptive beamforming with multiport parasitic array radiator
(MuPAR) antenna [1]. We apply the combination of a DBF and an analog beamforming algorithms at the
MuPAR. The MuPAR consists of multiple active elements and parasitic elements. The parasitic elements
are loaded with variable reactors. Since these elements are placed near the active elements, there is
inducing strong electromagnetic coupling between parasitic and active ones. These parasitic elements
operate as directors or reflectors by adjusting reactance of variable reactors. Compared with a DBF array
having the same number of elements, the MuPAR structure is composed of less RF channels and A/D
converters, thus has less power consumption. The goal of this paper is to examine the performance of
adaptive beamforming with the MuPAR. We apply the steepest gradient algorithm (SGA) [2] to optimize
the reactances; and apply RLS algorithm [3] to perform DBF at the active elements. We compare adaptive
beamforming performance with DBF array.

2. Signal Model
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Figure 1 Geometry of MuPAR.N = 2,M = 2.

The proposed MuPAR antenna consists ofN ac-
tive elements andM parasitic elements. Figure 1
shows an example of the antenna havingN = 2 ac-
tive andM = 2 parasitic elements considered in this
paper. There ared impinging signalssk(t) with di-
rection of arrivals (DoAs) (ϕk)(k = 1,2, · · · ,d). Let
us denotea(ϕk) as the steering vector of the MuPAR.
The output signals at theN RF ports of the MuPAR
can be written as

x(t) = iT
d∑

k=1

a(ϕk)sk(t) + n(t) (1)

wheren(t) is additive white Gaussian noise at the re-
ceiver, andT is the transpose of a vector or matrix.i is the current vector, given by [4] as

i =
(
Y −1 +Z +X

)−1
U (2)
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where the matrixZ = diag[z1, z2, · · · , zN,0, · · · ,0] is a diagonal matrix which consists of feed
impedances, and the matrixX = diag[0, · · · , 0, jX1, jX2, · · · , jXM] is a diagonal matrix called the reac-
tance matrix. Moreover, the matrixY components are mutual admittances between the array elements.
Matrix U is defined as

U =


1 · · · 0 0 · · · 0
...
. . .

...
...
. . .

...
0 · · · 1 0 · · · 0


T

(3)

3. Adaptive Algorithm
We apply a combination of SGA and RLS algorithm to perform adaptive beamforming with the

MuPAR. The flowchart of optimization of the adaptive algorithm is illustrated in Figure 2. The first step
is optimization of the reactances by SGA with given weight for the active elements. The second step is
optimization of the weights by RLS with the reactances. After optimization is completed, convergence
of output SINR is judged. The optimization sequence is repeated until the output SINR is converged.
The block diagram of MuPAR is shown in Figure 3.
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Figure 3 Functional block diagram of MuPAR

3. 1 RLS Algorithm

The weight determination algorithm for the MMSE-based RLS algorithm. The algorithm determines
knowing the output signals atN = 2 active elements in Eq.(1), the output after apply DBF at the two RF
ports is given as

y(m) = wH(m)x(m) (4)

wherem is the iteration index. The optimal weights are iteratively determined by minimizing the error
between the reference signalr(m) and the output signaly(m), which is given by [3]

|e(m)|2 = |r(m) − y(m)|2 = |r(m) −wHx(m)|2 (5)

x(m) is the received signal andH is the transpose and conjugate operation. In the RLS algorithm, the
weight determination equations of the (m+ 1)th iteration are given by [3]

w(m+ 1) = w(m) + γR−1
xx(m)x(m+ 1)e∗(m− 1) (6)

γ =
1

α + xH(m+ 1)R−1
xx(m)x(m+ 1)

(7)

whereRxx is the correlation matrix of the received signal andα is forgetting factor.
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3. 2 Steepest Gradient Algorithm

We briefly describe a SGA of the MuPAR. In this algorithm, a reference signalr(t) is used, which is
assumed to be known in receiver. As for the steepest gradient method, the updated value of the reactance
vector at the (m+ 1)th iteration is given by

X(m+ 1) =X(m) + µ∇ρm (8)

whereµ is a positive real-value constant which controls the convergence speed. An estimate of the
gradient vector∇ρm of Eq.(8) may be obtained by the use of finite-difference approximations of derivative
[5], [6]. In our algorithm a maximum cross correlation coefficient (MCCC)ρm is adoped. We assume
thaty(m) andr(m) are theP-dimensional column vectors that are discrete time samples ofy(t) andr(t),
respectively. The MCCC betweeny(m) andr(m) at them-th iteration is define by [2]

ρm =
|yH(m)r(m)|√

yH(m)y(m)
√

rH(m)r(m)
(9)

It is well known that the MCCC represents the similarity of two signals, while the error represents the
difference. Note that the correlation coefficient of Eq.(9) is normalized. The interference component in
the output signaly(t) is suppressed wheny(t) becomes ”similar” to the reference signalr(t) regardless of
their difference in amplitude.

4. Simulation
In this section, we show performance of the adaptive beamforming with MuPAR that combines

the optimization algorithms shown in Section 3. The MuPAR considered has two active elementsN =
2 (#1, #2) and two parasitic elementsM = 2 (#3, #4) as shown in Figure 1. The inter-element spacing is
λ/4, and the elements are dipole antennas of half-wavelength. The MCCC defined in Eq.(9) is calculated
with P = 10; and the value of the step-size parameterµ in Eq.(8) is assigned to 150. Number of
iterations of RLS and SGA is 20 and 30 times, respectively. The adaptive beamforming of MuPAR,
which combives RLS and SGA optimization stages, is repeated 10 times. Therefore, the total number of
the iteration is (20+ 30)× 10= 500.

Let’s first consider the case where there are three signals coming from different directions. The SNR
is 20 dB and the input SIR is 0 dB, assuming the equal powers of the signals. The desired signal and
the interference signals are incoherent. The initial value of each reactance is set to zero. Figure 4(a)
shows the convergence curve over 500 iterations. The formed beam pattern after iteration is shown in
figure 4(b). The beam is steered to the desired signal at 100◦, while the deep nulls are formed towards
the interference signals at 45◦ and 285◦.
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Figure 4 (a) Convergence property of SINR. (b)Antenna pattern after 500 iteration. DoAs are
[100◦,45◦,285◦] and DOA of desired is 100◦.
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Figure 5 Output SINR of the abscissa after iter-
ation of 500.

Second, we consider the statistical performance
of the output SINR of the adaptive beamforming with
MuPAR. We compare its performance with 2,3, and 4-
element DBFs. The geometry of the 2-element DBF is
same as the active elements of MuPAR. The 3-element
DBF is trigonal array equally spaced between the ar-
ray elements. The 4-element DBF has the same ele-
ment layout as MuPAR. DOA of the desired signal is
fixed at 90◦, and the DOA(s) and those of the two in-
terference signals are randomly generated according
to a uniform distribution over [0◦,359◦]. Ten thou-
sand totals are used to calculate the empirical com-
plementary cumulative distribution function (CCDF)
of the output SINR. The performance of the adaptive
beamforming with MuPAR is significantly much bet-
ter than the DBF of 2-element array. The performance
of the MuPAR adaptive beamforming is equivalent to that of the 3-element DBF.

5. Conclusions
In this paper, we evaluated a MuPAR antenna performance, and applied the combination of DBF and

analog beamforming. We applied the SGA to optimize the reactances and applied RLS algorithm at active
elements. The algorithm makes the MuPAR steer its beam and nulls automatically. After the system
model was given the performance of the proposed scheme was examined. The MuPAR can be adaptive
beamforming at three incident waves. The structure of the MuPAR enables adaptive beamforming to be
improved with less power consumption circuit scale. Adaptive beamforming of MuPAR is equivalent to
3-element DBF. Much better performance than the 2-element DBF is achieved with a MuPAR which has
only two additional parasitic elements. The structure features low power consumption and fabrication
cost. Thus, the proposed adaptive beamforming with MuPAR is a suitable for implementing adaptive
antennas for mobile terminals.
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